Fair gambler's ruin problem intuition
$begingroup$
In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.
In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_{k-1} = p_{k-1} - p_{k-2} = ... = p_1 - p_0 = p_1$.
Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.
Is there an intuitive reason why this is the case?
probability
$endgroup$
add a comment |
$begingroup$
In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.
In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_{k-1} = p_{k-1} - p_{k-2} = ... = p_1 - p_0 = p_1$.
Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.
Is there an intuitive reason why this is the case?
probability
$endgroup$
add a comment |
$begingroup$
In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.
In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_{k-1} = p_{k-1} - p_{k-2} = ... = p_1 - p_0 = p_1$.
Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.
Is there an intuitive reason why this is the case?
probability
$endgroup$
In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.
In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_{k-1} = p_{k-1} - p_{k-2} = ... = p_1 - p_0 = p_1$.
Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.
Is there an intuitive reason why this is the case?
probability
probability
asked 2 hours ago
platypus17platypus17
366
366
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_{k-1} - q_k = q_{k-2} - q_{k - 1} = ldots = q_1 - q_2 = q_0 - q_1 tag{1}label{eq1}$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac{1}{2}p_{i - 1} + frac{1}{2}p_{i + 1} tag{2}label{eq2}$$
based on the probabilities of either winning or losing the first time. Summing eqref{eq2} for $i$ from $1$ to $k - 1$ gives
$$sum_{i=1}^{k-1} p_i = frac{1}{2}sum_{i=1}^{k-1} p_{i - 1} + frac{1}{2}sum_{i=1}^{k-1} p_{i + 1} tag{3}label{eq3}$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_{i=2}^{k - 2} p_i + p_{k-1} = frac{1}{2}p_0 + frac{1}{2}p_1 + frac{1}{2}sum_{i=2}^{k - 2} p_i + frac{1}{2}sum_{i=2}^{k - 2} p_i + frac{1}{2}p_{k-1} + frac{1}{2}p_k tag{4}label{eq4}$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_{k-1}$ term on the left to the RHS, eqref{eq4} becomes
$$frac{1}{2}p_1 - frac{1}{2}p_0 = frac{1}{2}p_k - frac{1}{2}p_{k-1} tag{5}label{eq5}$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqref{eq2} to get that $p_{i+1} - p_{i} = p_{i} - p_{i-1}$, like John Doe's answer states.
$endgroup$
add a comment |
$begingroup$
The probability of reaching $n staring with $k can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability 1/2. Then $$p_k=frac12(p_{k-1}+p_{k+1})$$ Rearranging this gives $$2p_k=p_{k-1}+p_{k+1}\p_k-p_{k-1}=p_{k+1}-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172677%2ffair-gamblers-ruin-problem-intuition%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_{k-1} - q_k = q_{k-2} - q_{k - 1} = ldots = q_1 - q_2 = q_0 - q_1 tag{1}label{eq1}$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac{1}{2}p_{i - 1} + frac{1}{2}p_{i + 1} tag{2}label{eq2}$$
based on the probabilities of either winning or losing the first time. Summing eqref{eq2} for $i$ from $1$ to $k - 1$ gives
$$sum_{i=1}^{k-1} p_i = frac{1}{2}sum_{i=1}^{k-1} p_{i - 1} + frac{1}{2}sum_{i=1}^{k-1} p_{i + 1} tag{3}label{eq3}$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_{i=2}^{k - 2} p_i + p_{k-1} = frac{1}{2}p_0 + frac{1}{2}p_1 + frac{1}{2}sum_{i=2}^{k - 2} p_i + frac{1}{2}sum_{i=2}^{k - 2} p_i + frac{1}{2}p_{k-1} + frac{1}{2}p_k tag{4}label{eq4}$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_{k-1}$ term on the left to the RHS, eqref{eq4} becomes
$$frac{1}{2}p_1 - frac{1}{2}p_0 = frac{1}{2}p_k - frac{1}{2}p_{k-1} tag{5}label{eq5}$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqref{eq2} to get that $p_{i+1} - p_{i} = p_{i} - p_{i-1}$, like John Doe's answer states.
$endgroup$
add a comment |
$begingroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_{k-1} - q_k = q_{k-2} - q_{k - 1} = ldots = q_1 - q_2 = q_0 - q_1 tag{1}label{eq1}$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac{1}{2}p_{i - 1} + frac{1}{2}p_{i + 1} tag{2}label{eq2}$$
based on the probabilities of either winning or losing the first time. Summing eqref{eq2} for $i$ from $1$ to $k - 1$ gives
$$sum_{i=1}^{k-1} p_i = frac{1}{2}sum_{i=1}^{k-1} p_{i - 1} + frac{1}{2}sum_{i=1}^{k-1} p_{i + 1} tag{3}label{eq3}$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_{i=2}^{k - 2} p_i + p_{k-1} = frac{1}{2}p_0 + frac{1}{2}p_1 + frac{1}{2}sum_{i=2}^{k - 2} p_i + frac{1}{2}sum_{i=2}^{k - 2} p_i + frac{1}{2}p_{k-1} + frac{1}{2}p_k tag{4}label{eq4}$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_{k-1}$ term on the left to the RHS, eqref{eq4} becomes
$$frac{1}{2}p_1 - frac{1}{2}p_0 = frac{1}{2}p_k - frac{1}{2}p_{k-1} tag{5}label{eq5}$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqref{eq2} to get that $p_{i+1} - p_{i} = p_{i} - p_{i-1}$, like John Doe's answer states.
$endgroup$
add a comment |
$begingroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_{k-1} - q_k = q_{k-2} - q_{k - 1} = ldots = q_1 - q_2 = q_0 - q_1 tag{1}label{eq1}$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac{1}{2}p_{i - 1} + frac{1}{2}p_{i + 1} tag{2}label{eq2}$$
based on the probabilities of either winning or losing the first time. Summing eqref{eq2} for $i$ from $1$ to $k - 1$ gives
$$sum_{i=1}^{k-1} p_i = frac{1}{2}sum_{i=1}^{k-1} p_{i - 1} + frac{1}{2}sum_{i=1}^{k-1} p_{i + 1} tag{3}label{eq3}$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_{i=2}^{k - 2} p_i + p_{k-1} = frac{1}{2}p_0 + frac{1}{2}p_1 + frac{1}{2}sum_{i=2}^{k - 2} p_i + frac{1}{2}sum_{i=2}^{k - 2} p_i + frac{1}{2}p_{k-1} + frac{1}{2}p_k tag{4}label{eq4}$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_{k-1}$ term on the left to the RHS, eqref{eq4} becomes
$$frac{1}{2}p_1 - frac{1}{2}p_0 = frac{1}{2}p_k - frac{1}{2}p_{k-1} tag{5}label{eq5}$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqref{eq2} to get that $p_{i+1} - p_{i} = p_{i} - p_{i-1}$, like John Doe's answer states.
$endgroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_{k-1} - q_k = q_{k-2} - q_{k - 1} = ldots = q_1 - q_2 = q_0 - q_1 tag{1}label{eq1}$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac{1}{2}p_{i - 1} + frac{1}{2}p_{i + 1} tag{2}label{eq2}$$
based on the probabilities of either winning or losing the first time. Summing eqref{eq2} for $i$ from $1$ to $k - 1$ gives
$$sum_{i=1}^{k-1} p_i = frac{1}{2}sum_{i=1}^{k-1} p_{i - 1} + frac{1}{2}sum_{i=1}^{k-1} p_{i + 1} tag{3}label{eq3}$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_{i=2}^{k - 2} p_i + p_{k-1} = frac{1}{2}p_0 + frac{1}{2}p_1 + frac{1}{2}sum_{i=2}^{k - 2} p_i + frac{1}{2}sum_{i=2}^{k - 2} p_i + frac{1}{2}p_{k-1} + frac{1}{2}p_k tag{4}label{eq4}$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_{k-1}$ term on the left to the RHS, eqref{eq4} becomes
$$frac{1}{2}p_1 - frac{1}{2}p_0 = frac{1}{2}p_k - frac{1}{2}p_{k-1} tag{5}label{eq5}$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqref{eq2} to get that $p_{i+1} - p_{i} = p_{i} - p_{i-1}$, like John Doe's answer states.
edited 46 mins ago
answered 2 hours ago
John OmielanJohn Omielan
4,5362215
4,5362215
add a comment |
add a comment |
$begingroup$
The probability of reaching $n staring with $k can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability 1/2. Then $$p_k=frac12(p_{k-1}+p_{k+1})$$ Rearranging this gives $$2p_k=p_{k-1}+p_{k+1}\p_k-p_{k-1}=p_{k+1}-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
$endgroup$
add a comment |
$begingroup$
The probability of reaching $n staring with $k can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability 1/2. Then $$p_k=frac12(p_{k-1}+p_{k+1})$$ Rearranging this gives $$2p_k=p_{k-1}+p_{k+1}\p_k-p_{k-1}=p_{k+1}-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
$endgroup$
add a comment |
$begingroup$
The probability of reaching $n staring with $k can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability 1/2. Then $$p_k=frac12(p_{k-1}+p_{k+1})$$ Rearranging this gives $$2p_k=p_{k-1}+p_{k+1}\p_k-p_{k-1}=p_{k+1}-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
$endgroup$
The probability of reaching $n staring with $k can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability 1/2. Then $$p_k=frac12(p_{k-1}+p_{k+1})$$ Rearranging this gives $$2p_k=p_{k-1}+p_{k+1}\p_k-p_{k-1}=p_{k+1}-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
edited 1 hour ago
answered 2 hours ago
John DoeJohn Doe
11.5k11239
11.5k11239
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172677%2ffair-gamblers-ruin-problem-intuition%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown