Compute the following sum.












1














I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$



But I am not sure if this is correct. Perhaps someone could give an indication.










share|cite|improve this question


















  • 2




    It's incorrect since $S$ is a function of $m$, not $t$.
    – Kemono Chen
    2 hours ago










  • You can write $t$ in terms of $m$ in each case.
    – Hello_World
    2 hours ago










  • @Hello_World Actuallly, you can.
    – 5xum
    2 hours ago










  • Are you asking me to write them in terms of $m$? I can do that if it helps.
    – Hello_World
    2 hours ago


















1














I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$



But I am not sure if this is correct. Perhaps someone could give an indication.










share|cite|improve this question


















  • 2




    It's incorrect since $S$ is a function of $m$, not $t$.
    – Kemono Chen
    2 hours ago










  • You can write $t$ in terms of $m$ in each case.
    – Hello_World
    2 hours ago










  • @Hello_World Actuallly, you can.
    – 5xum
    2 hours ago










  • Are you asking me to write them in terms of $m$? I can do that if it helps.
    – Hello_World
    2 hours ago
















1












1








1







I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$



But I am not sure if this is correct. Perhaps someone could give an indication.










share|cite|improve this question













I want to compute the following sum
$$S = sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor.$$
Here is what I tried:
$$ S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor.$$
If $m= 2t$ then
$$S =sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{(t-1)t}{2} = t^2.$$
If $m= 2t+1$ then
$$S = sum_{kgeq 0, 2|k}^{m} leftlfloor frac{k}{2}rightrfloor + sum_{kgeq 0, 2not |k}^{m} leftlfloor frac{k}{2}rightrfloor = frac{t(t+1)}{2} + frac{t(t+1)}{2}= t(t+1).$$



But I am not sure if this is correct. Perhaps someone could give an indication.







sequences-and-series number-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 hours ago









Hello_WorldHello_World

4,14521630




4,14521630








  • 2




    It's incorrect since $S$ is a function of $m$, not $t$.
    – Kemono Chen
    2 hours ago










  • You can write $t$ in terms of $m$ in each case.
    – Hello_World
    2 hours ago










  • @Hello_World Actuallly, you can.
    – 5xum
    2 hours ago










  • Are you asking me to write them in terms of $m$? I can do that if it helps.
    – Hello_World
    2 hours ago
















  • 2




    It's incorrect since $S$ is a function of $m$, not $t$.
    – Kemono Chen
    2 hours ago










  • You can write $t$ in terms of $m$ in each case.
    – Hello_World
    2 hours ago










  • @Hello_World Actuallly, you can.
    – 5xum
    2 hours ago










  • Are you asking me to write them in terms of $m$? I can do that if it helps.
    – Hello_World
    2 hours ago










2




2




It's incorrect since $S$ is a function of $m$, not $t$.
– Kemono Chen
2 hours ago




It's incorrect since $S$ is a function of $m$, not $t$.
– Kemono Chen
2 hours ago












You can write $t$ in terms of $m$ in each case.
– Hello_World
2 hours ago




You can write $t$ in terms of $m$ in each case.
– Hello_World
2 hours ago












@Hello_World Actuallly, you can.
– 5xum
2 hours ago




@Hello_World Actuallly, you can.
– 5xum
2 hours ago












Are you asking me to write them in terms of $m$? I can do that if it helps.
– Hello_World
2 hours ago






Are you asking me to write them in terms of $m$? I can do that if it helps.
– Hello_World
2 hours ago












1 Answer
1






active

oldest

votes


















5














Yes, you are correct. You may also write the result as a more compact formula:
$$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
begin{cases}
t^2&text {if $m=2t$}\
t(t+1)&text {if $m=2t+1$}\
end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$

Indeed, if $m=2t$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
and if $m=2t+1$ then
$$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069610%2fcompute-the-following-sum%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5














    Yes, you are correct. You may also write the result as a more compact formula:
    $$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
    begin{cases}
    t^2&text {if $m=2t$}\
    t(t+1)&text {if $m=2t+1$}\
    end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$

    Indeed, if $m=2t$ then
    $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
    and if $m=2t+1$ then
    $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$






    share|cite|improve this answer




























      5














      Yes, you are correct. You may also write the result as a more compact formula:
      $$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
      begin{cases}
      t^2&text {if $m=2t$}\
      t(t+1)&text {if $m=2t+1$}\
      end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$

      Indeed, if $m=2t$ then
      $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
      and if $m=2t+1$ then
      $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$






      share|cite|improve this answer


























        5












        5








        5






        Yes, you are correct. You may also write the result as a more compact formula:
        $$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
        begin{cases}
        t^2&text {if $m=2t$}\
        t(t+1)&text {if $m=2t+1$}\
        end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$

        Indeed, if $m=2t$ then
        $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
        and if $m=2t+1$ then
        $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$






        share|cite|improve this answer














        Yes, you are correct. You may also write the result as a more compact formula:
        $$sum_{k=0}^{m} leftlfloor frac{k}{2}rightrfloor=
        begin{cases}
        t^2&text {if $m=2t$}\
        t(t+1)&text {if $m=2t+1$}\
        end{cases}=leftlfloor frac{m^2}{4}rightrfloor.$$

        Indeed, if $m=2t$ then
        $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2rightrfloor=t^2$$
        and if $m=2t+1$ then
        $$leftlfloor frac{m^2}{4}rightrfloor=leftlfloor t^2+t+frac{1}{4}rightrfloor=t(t+1).$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 2 hours ago

























        answered 2 hours ago









        Robert ZRobert Z

        94.2k1061132




        94.2k1061132






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069610%2fcompute-the-following-sum%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Liste der Baudenkmale in Friedland (Mecklenburg)

            Single-Malt-Whisky

            Czorneboh