Searching extreme points of polyhedron
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}
$begingroup$
In my Uni, my scientific professor asked me to make some researches about the extreme points of polyhedrals. And I did them. I found that there is still no code in public for searching extreme points for polyhedral with n dimensions (n - x's), but polyhedrons are everywhere (CV, game theories, etc.). I wrote a function for this task and made a python library (also there are matrix and array combination maker functions).
All I want is to make this code more optimal and compatible for all python versions (I have some troubles that some times happen when I install it by "pip install lin", but other times no). I want to make the life of people easier and make it more comfortable.
I am asking for you to test this function on your computer and write if you have any bugs, fails or thoughts on how to make it better. I am open to constructive criticism and non-constructive too (it will help to understand if somebody needs it or that is just a waste of time).
All the examples, instructions and code on my GitHub: https://github.com/r4ndompuff/polyhedral_set
import numpy as np
import itertools as it
import math
import re
def permutation(m,n):
return math.factorial(n)/(math.factorial(n-m)*math.factorial(m))
def matrix_combinations(matr,n):
timed = list(map(list, it.combinations(matr, n)))
for i in range(n):
timed[i][i][i] = np.asscalar(timed[i][i][i])
all = np.array(list(timed))
return all
def array_combinations(arr,n):
timed = list(map(list, it.combinations(arr, n)))
for i in range(n):
timed[i][i] = np.asscalar(timed[i][i])
all = np.array(list(timed))
return all
def check_extreme(matr, arr, x, sym_comb, m):
sym_comb = sym_comb.replace(']', '')
sym_comb = sym_comb.replace('[', '')
sym_comb = re.split("[ ,]", sym_comb)
for i in range(m):
td_answer = sum(matr[i]*x)
if sym_comb[i] == '>':
if td_answer <= arr[i]:
return 0
elif sym_comb[i] == '>=':
if td_answer < arr[i]:
return 0
elif sym_comb[i] == '<':
if td_answer >= arr[i]:
return 0
elif sym_comb[i] == '<=':
if td_answer > arr[i]:
return 0
elif sym_comb[i] == '=':
if td_answer != arr[i]:
return 0
elif sym_comb[i] == '!=':
if td_answer == arr[i]:
return 0
else:
return 0
return 1
def extreme_points(m,n,A,b,sym_comb):
# Input
A = np.array(A).reshape(m,n)
b = np.array(b).reshape(m,1)
# Proccess
ans_comb = np.zeros((1,n))
arr_comb = array_combinations(b,n)
matr_comb = matrix_combinations(A,n)
for i in range(int(permutation(n,m))):
if np.linalg.det(matr_comb[i]) != 0:
x = np.linalg.solve(matr_comb[i],arr_comb[i])
ans_comb = np.vstack([ans_comb,x])
ans_comb = np.delete(ans_comb, (0), axis=0)
j = 0
for i in range(len(ans_comb)):
if check_extreme(A, b, ans_comb[j], sym_comb, m):
ans_comb = ans_comb
j = j + 1
else:
ans_comb = np.delete(ans_comb, (j), axis=0)
# Output
return ans_comb
And I am uploading some more tests. https://imgur.com/mjweDyy
python algorithm numpy homework computational-geometry
New contributor
$endgroup$
|
show 2 more comments
$begingroup$
In my Uni, my scientific professor asked me to make some researches about the extreme points of polyhedrals. And I did them. I found that there is still no code in public for searching extreme points for polyhedral with n dimensions (n - x's), but polyhedrons are everywhere (CV, game theories, etc.). I wrote a function for this task and made a python library (also there are matrix and array combination maker functions).
All I want is to make this code more optimal and compatible for all python versions (I have some troubles that some times happen when I install it by "pip install lin", but other times no). I want to make the life of people easier and make it more comfortable.
I am asking for you to test this function on your computer and write if you have any bugs, fails or thoughts on how to make it better. I am open to constructive criticism and non-constructive too (it will help to understand if somebody needs it or that is just a waste of time).
All the examples, instructions and code on my GitHub: https://github.com/r4ndompuff/polyhedral_set
import numpy as np
import itertools as it
import math
import re
def permutation(m,n):
return math.factorial(n)/(math.factorial(n-m)*math.factorial(m))
def matrix_combinations(matr,n):
timed = list(map(list, it.combinations(matr, n)))
for i in range(n):
timed[i][i][i] = np.asscalar(timed[i][i][i])
all = np.array(list(timed))
return all
def array_combinations(arr,n):
timed = list(map(list, it.combinations(arr, n)))
for i in range(n):
timed[i][i] = np.asscalar(timed[i][i])
all = np.array(list(timed))
return all
def check_extreme(matr, arr, x, sym_comb, m):
sym_comb = sym_comb.replace(']', '')
sym_comb = sym_comb.replace('[', '')
sym_comb = re.split("[ ,]", sym_comb)
for i in range(m):
td_answer = sum(matr[i]*x)
if sym_comb[i] == '>':
if td_answer <= arr[i]:
return 0
elif sym_comb[i] == '>=':
if td_answer < arr[i]:
return 0
elif sym_comb[i] == '<':
if td_answer >= arr[i]:
return 0
elif sym_comb[i] == '<=':
if td_answer > arr[i]:
return 0
elif sym_comb[i] == '=':
if td_answer != arr[i]:
return 0
elif sym_comb[i] == '!=':
if td_answer == arr[i]:
return 0
else:
return 0
return 1
def extreme_points(m,n,A,b,sym_comb):
# Input
A = np.array(A).reshape(m,n)
b = np.array(b).reshape(m,1)
# Proccess
ans_comb = np.zeros((1,n))
arr_comb = array_combinations(b,n)
matr_comb = matrix_combinations(A,n)
for i in range(int(permutation(n,m))):
if np.linalg.det(matr_comb[i]) != 0:
x = np.linalg.solve(matr_comb[i],arr_comb[i])
ans_comb = np.vstack([ans_comb,x])
ans_comb = np.delete(ans_comb, (0), axis=0)
j = 0
for i in range(len(ans_comb)):
if check_extreme(A, b, ans_comb[j], sym_comb, m):
ans_comb = ans_comb
j = j + 1
else:
ans_comb = np.delete(ans_comb, (j), axis=0)
# Output
return ans_comb
And I am uploading some more tests. https://imgur.com/mjweDyy
python algorithm numpy homework computational-geometry
New contributor
$endgroup$
$begingroup$
Can you provide some more information on what exactly is going on, from a math standpoint? Is this actually a polyhedron, or a polytope? In how many dimensions? By "extreme", what do you mean? Euclidean norm from (the origin, an arbitrary point)?
$endgroup$
– Reinderien
4 hours ago
$begingroup$
"there is still no code in public for searching extreme points for polyhedral with n dimensions" - I can nearly guarantee that that isn't the case.
$endgroup$
– Reinderien
4 hours ago
1
$begingroup$
@Reinderien I am still in the process of deciphering the question. I have a math background, and I share the mother tongue with OP. My impression is that by extremal points OP means the vertices of a simplex where a certain linear form (defined byA
,b
, and the condition) achieves an extremum. I could be wrong.
$endgroup$
– vnp
2 hours ago
$begingroup$
@vnp That's kind of what I guessed, and if that's the case, linear programming is a quite well-established field already - with some stuff built right into scipy.
$endgroup$
– Reinderien
2 hours ago
$begingroup$
@Reinderien Agreed. Still deciphering.
$endgroup$
– vnp
2 hours ago
|
show 2 more comments
$begingroup$
In my Uni, my scientific professor asked me to make some researches about the extreme points of polyhedrals. And I did them. I found that there is still no code in public for searching extreme points for polyhedral with n dimensions (n - x's), but polyhedrons are everywhere (CV, game theories, etc.). I wrote a function for this task and made a python library (also there are matrix and array combination maker functions).
All I want is to make this code more optimal and compatible for all python versions (I have some troubles that some times happen when I install it by "pip install lin", but other times no). I want to make the life of people easier and make it more comfortable.
I am asking for you to test this function on your computer and write if you have any bugs, fails or thoughts on how to make it better. I am open to constructive criticism and non-constructive too (it will help to understand if somebody needs it or that is just a waste of time).
All the examples, instructions and code on my GitHub: https://github.com/r4ndompuff/polyhedral_set
import numpy as np
import itertools as it
import math
import re
def permutation(m,n):
return math.factorial(n)/(math.factorial(n-m)*math.factorial(m))
def matrix_combinations(matr,n):
timed = list(map(list, it.combinations(matr, n)))
for i in range(n):
timed[i][i][i] = np.asscalar(timed[i][i][i])
all = np.array(list(timed))
return all
def array_combinations(arr,n):
timed = list(map(list, it.combinations(arr, n)))
for i in range(n):
timed[i][i] = np.asscalar(timed[i][i])
all = np.array(list(timed))
return all
def check_extreme(matr, arr, x, sym_comb, m):
sym_comb = sym_comb.replace(']', '')
sym_comb = sym_comb.replace('[', '')
sym_comb = re.split("[ ,]", sym_comb)
for i in range(m):
td_answer = sum(matr[i]*x)
if sym_comb[i] == '>':
if td_answer <= arr[i]:
return 0
elif sym_comb[i] == '>=':
if td_answer < arr[i]:
return 0
elif sym_comb[i] == '<':
if td_answer >= arr[i]:
return 0
elif sym_comb[i] == '<=':
if td_answer > arr[i]:
return 0
elif sym_comb[i] == '=':
if td_answer != arr[i]:
return 0
elif sym_comb[i] == '!=':
if td_answer == arr[i]:
return 0
else:
return 0
return 1
def extreme_points(m,n,A,b,sym_comb):
# Input
A = np.array(A).reshape(m,n)
b = np.array(b).reshape(m,1)
# Proccess
ans_comb = np.zeros((1,n))
arr_comb = array_combinations(b,n)
matr_comb = matrix_combinations(A,n)
for i in range(int(permutation(n,m))):
if np.linalg.det(matr_comb[i]) != 0:
x = np.linalg.solve(matr_comb[i],arr_comb[i])
ans_comb = np.vstack([ans_comb,x])
ans_comb = np.delete(ans_comb, (0), axis=0)
j = 0
for i in range(len(ans_comb)):
if check_extreme(A, b, ans_comb[j], sym_comb, m):
ans_comb = ans_comb
j = j + 1
else:
ans_comb = np.delete(ans_comb, (j), axis=0)
# Output
return ans_comb
And I am uploading some more tests. https://imgur.com/mjweDyy
python algorithm numpy homework computational-geometry
New contributor
$endgroup$
In my Uni, my scientific professor asked me to make some researches about the extreme points of polyhedrals. And I did them. I found that there is still no code in public for searching extreme points for polyhedral with n dimensions (n - x's), but polyhedrons are everywhere (CV, game theories, etc.). I wrote a function for this task and made a python library (also there are matrix and array combination maker functions).
All I want is to make this code more optimal and compatible for all python versions (I have some troubles that some times happen when I install it by "pip install lin", but other times no). I want to make the life of people easier and make it more comfortable.
I am asking for you to test this function on your computer and write if you have any bugs, fails or thoughts on how to make it better. I am open to constructive criticism and non-constructive too (it will help to understand if somebody needs it or that is just a waste of time).
All the examples, instructions and code on my GitHub: https://github.com/r4ndompuff/polyhedral_set
import numpy as np
import itertools as it
import math
import re
def permutation(m,n):
return math.factorial(n)/(math.factorial(n-m)*math.factorial(m))
def matrix_combinations(matr,n):
timed = list(map(list, it.combinations(matr, n)))
for i in range(n):
timed[i][i][i] = np.asscalar(timed[i][i][i])
all = np.array(list(timed))
return all
def array_combinations(arr,n):
timed = list(map(list, it.combinations(arr, n)))
for i in range(n):
timed[i][i] = np.asscalar(timed[i][i])
all = np.array(list(timed))
return all
def check_extreme(matr, arr, x, sym_comb, m):
sym_comb = sym_comb.replace(']', '')
sym_comb = sym_comb.replace('[', '')
sym_comb = re.split("[ ,]", sym_comb)
for i in range(m):
td_answer = sum(matr[i]*x)
if sym_comb[i] == '>':
if td_answer <= arr[i]:
return 0
elif sym_comb[i] == '>=':
if td_answer < arr[i]:
return 0
elif sym_comb[i] == '<':
if td_answer >= arr[i]:
return 0
elif sym_comb[i] == '<=':
if td_answer > arr[i]:
return 0
elif sym_comb[i] == '=':
if td_answer != arr[i]:
return 0
elif sym_comb[i] == '!=':
if td_answer == arr[i]:
return 0
else:
return 0
return 1
def extreme_points(m,n,A,b,sym_comb):
# Input
A = np.array(A).reshape(m,n)
b = np.array(b).reshape(m,1)
# Proccess
ans_comb = np.zeros((1,n))
arr_comb = array_combinations(b,n)
matr_comb = matrix_combinations(A,n)
for i in range(int(permutation(n,m))):
if np.linalg.det(matr_comb[i]) != 0:
x = np.linalg.solve(matr_comb[i],arr_comb[i])
ans_comb = np.vstack([ans_comb,x])
ans_comb = np.delete(ans_comb, (0), axis=0)
j = 0
for i in range(len(ans_comb)):
if check_extreme(A, b, ans_comb[j], sym_comb, m):
ans_comb = ans_comb
j = j + 1
else:
ans_comb = np.delete(ans_comb, (j), axis=0)
# Output
return ans_comb
And I am uploading some more tests. https://imgur.com/mjweDyy
python algorithm numpy homework computational-geometry
python algorithm numpy homework computational-geometry
New contributor
New contributor
edited 8 mins ago
200_success
131k17157422
131k17157422
New contributor
asked 4 hours ago
Andrey LovyaginAndrey Lovyagin
161
161
New contributor
New contributor
$begingroup$
Can you provide some more information on what exactly is going on, from a math standpoint? Is this actually a polyhedron, or a polytope? In how many dimensions? By "extreme", what do you mean? Euclidean norm from (the origin, an arbitrary point)?
$endgroup$
– Reinderien
4 hours ago
$begingroup$
"there is still no code in public for searching extreme points for polyhedral with n dimensions" - I can nearly guarantee that that isn't the case.
$endgroup$
– Reinderien
4 hours ago
1
$begingroup$
@Reinderien I am still in the process of deciphering the question. I have a math background, and I share the mother tongue with OP. My impression is that by extremal points OP means the vertices of a simplex where a certain linear form (defined byA
,b
, and the condition) achieves an extremum. I could be wrong.
$endgroup$
– vnp
2 hours ago
$begingroup$
@vnp That's kind of what I guessed, and if that's the case, linear programming is a quite well-established field already - with some stuff built right into scipy.
$endgroup$
– Reinderien
2 hours ago
$begingroup$
@Reinderien Agreed. Still deciphering.
$endgroup$
– vnp
2 hours ago
|
show 2 more comments
$begingroup$
Can you provide some more information on what exactly is going on, from a math standpoint? Is this actually a polyhedron, or a polytope? In how many dimensions? By "extreme", what do you mean? Euclidean norm from (the origin, an arbitrary point)?
$endgroup$
– Reinderien
4 hours ago
$begingroup$
"there is still no code in public for searching extreme points for polyhedral with n dimensions" - I can nearly guarantee that that isn't the case.
$endgroup$
– Reinderien
4 hours ago
1
$begingroup$
@Reinderien I am still in the process of deciphering the question. I have a math background, and I share the mother tongue with OP. My impression is that by extremal points OP means the vertices of a simplex where a certain linear form (defined byA
,b
, and the condition) achieves an extremum. I could be wrong.
$endgroup$
– vnp
2 hours ago
$begingroup$
@vnp That's kind of what I guessed, and if that's the case, linear programming is a quite well-established field already - with some stuff built right into scipy.
$endgroup$
– Reinderien
2 hours ago
$begingroup$
@Reinderien Agreed. Still deciphering.
$endgroup$
– vnp
2 hours ago
$begingroup$
Can you provide some more information on what exactly is going on, from a math standpoint? Is this actually a polyhedron, or a polytope? In how many dimensions? By "extreme", what do you mean? Euclidean norm from (the origin, an arbitrary point)?
$endgroup$
– Reinderien
4 hours ago
$begingroup$
Can you provide some more information on what exactly is going on, from a math standpoint? Is this actually a polyhedron, or a polytope? In how many dimensions? By "extreme", what do you mean? Euclidean norm from (the origin, an arbitrary point)?
$endgroup$
– Reinderien
4 hours ago
$begingroup$
"there is still no code in public for searching extreme points for polyhedral with n dimensions" - I can nearly guarantee that that isn't the case.
$endgroup$
– Reinderien
4 hours ago
$begingroup$
"there is still no code in public for searching extreme points for polyhedral with n dimensions" - I can nearly guarantee that that isn't the case.
$endgroup$
– Reinderien
4 hours ago
1
1
$begingroup$
@Reinderien I am still in the process of deciphering the question. I have a math background, and I share the mother tongue with OP. My impression is that by extremal points OP means the vertices of a simplex where a certain linear form (defined by
A
, b
, and the condition) achieves an extremum. I could be wrong.$endgroup$
– vnp
2 hours ago
$begingroup$
@Reinderien I am still in the process of deciphering the question. I have a math background, and I share the mother tongue with OP. My impression is that by extremal points OP means the vertices of a simplex where a certain linear form (defined by
A
, b
, and the condition) achieves an extremum. I could be wrong.$endgroup$
– vnp
2 hours ago
$begingroup$
@vnp That's kind of what I guessed, and if that's the case, linear programming is a quite well-established field already - with some stuff built right into scipy.
$endgroup$
– Reinderien
2 hours ago
$begingroup$
@vnp That's kind of what I guessed, and if that's the case, linear programming is a quite well-established field already - with some stuff built right into scipy.
$endgroup$
– Reinderien
2 hours ago
$begingroup$
@Reinderien Agreed. Still deciphering.
$endgroup$
– vnp
2 hours ago
$begingroup$
@Reinderien Agreed. Still deciphering.
$endgroup$
– vnp
2 hours ago
|
show 2 more comments
1 Answer
1
active
oldest
votes
$begingroup$
I created a rudimentary pull request to your GitHub repo. I won't show all of the content here except for the main file:
import numpy as np
import itertools as it
import math
import re
def permutation(m, n):
return math.factorial(n) / (math.factorial(n - m) * math.factorial(m))
def matrix_combinations(matr, n):
timed = list(map(list, it.combinations(matr, n)))
for i in range(n):
timed[i][i][i] = np.asscalar(timed[i][i][i])
return np.array(list(timed))
def array_combinations(arr, n):
timed = list(map(list, it.combinations(arr, n)))
for i in range(n):
timed[i][i] = np.asscalar(timed[i][i])
return np.array(list(timed))
def check_extreme(matr, arr, x, sym_comb, m):
sym_comb = sym_comb.replace(']', '')
sym_comb = sym_comb.replace('[', '')
sym_comb = re.split("[ ,]", sym_comb)
for i in range(m):
td_answer = sum(matr[i] * x)
if sym_comb[i] == '>':
if td_answer <= arr[i]:
return 0
elif sym_comb[i] == '>=':
if td_answer < arr[i]:
return 0
elif sym_comb[i] == '<':
if td_answer >= arr[i]:
return 0
elif sym_comb[i] == '<=':
if td_answer > arr[i]:
return 0
elif sym_comb[i] == '=':
if td_answer != arr[i]:
return 0
elif sym_comb[i] == '!=':
if td_answer == arr[i]:
return 0
else:
return 0
return 1
def extreme_points(m, n, A, b, sym_comb):
# Input
A = np.array(A).reshape(m, n)
b = np.array(b).reshape(m, 1)
# Process
ans_comb = np.zeros((1, n))
arr_comb = array_combinations(b, n)
matr_comb = matrix_combinations(A, n)
for i in range(int(permutation(n, m))):
if np.linalg.det(matr_comb[i]) != 0:
x = np.linalg.solve(matr_comb[i], arr_comb[i])
ans_comb = np.vstack([ans_comb, x])
ans_comb = np.delete(ans_comb, 0, axis=0)
j = 0
for i in range(len(ans_comb)):
if check_extreme(A, b, ans_comb[j], sym_comb, m):
ans_comb = ans_comb
j = j + 1
else:
ans_comb = np.delete(ans_comb, j, axis=0)
# Output
return ans_comb
This is a first cut mainly for PEP8 compliance, and doesn't solve the bigger issue that you should replace 99% of this with a call to scipy. I'll do that separately (I suspect that @vnp is, as well).
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Andrey Lovyagin is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f217855%2fsearching-extreme-points-of-polyhedron%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I created a rudimentary pull request to your GitHub repo. I won't show all of the content here except for the main file:
import numpy as np
import itertools as it
import math
import re
def permutation(m, n):
return math.factorial(n) / (math.factorial(n - m) * math.factorial(m))
def matrix_combinations(matr, n):
timed = list(map(list, it.combinations(matr, n)))
for i in range(n):
timed[i][i][i] = np.asscalar(timed[i][i][i])
return np.array(list(timed))
def array_combinations(arr, n):
timed = list(map(list, it.combinations(arr, n)))
for i in range(n):
timed[i][i] = np.asscalar(timed[i][i])
return np.array(list(timed))
def check_extreme(matr, arr, x, sym_comb, m):
sym_comb = sym_comb.replace(']', '')
sym_comb = sym_comb.replace('[', '')
sym_comb = re.split("[ ,]", sym_comb)
for i in range(m):
td_answer = sum(matr[i] * x)
if sym_comb[i] == '>':
if td_answer <= arr[i]:
return 0
elif sym_comb[i] == '>=':
if td_answer < arr[i]:
return 0
elif sym_comb[i] == '<':
if td_answer >= arr[i]:
return 0
elif sym_comb[i] == '<=':
if td_answer > arr[i]:
return 0
elif sym_comb[i] == '=':
if td_answer != arr[i]:
return 0
elif sym_comb[i] == '!=':
if td_answer == arr[i]:
return 0
else:
return 0
return 1
def extreme_points(m, n, A, b, sym_comb):
# Input
A = np.array(A).reshape(m, n)
b = np.array(b).reshape(m, 1)
# Process
ans_comb = np.zeros((1, n))
arr_comb = array_combinations(b, n)
matr_comb = matrix_combinations(A, n)
for i in range(int(permutation(n, m))):
if np.linalg.det(matr_comb[i]) != 0:
x = np.linalg.solve(matr_comb[i], arr_comb[i])
ans_comb = np.vstack([ans_comb, x])
ans_comb = np.delete(ans_comb, 0, axis=0)
j = 0
for i in range(len(ans_comb)):
if check_extreme(A, b, ans_comb[j], sym_comb, m):
ans_comb = ans_comb
j = j + 1
else:
ans_comb = np.delete(ans_comb, j, axis=0)
# Output
return ans_comb
This is a first cut mainly for PEP8 compliance, and doesn't solve the bigger issue that you should replace 99% of this with a call to scipy. I'll do that separately (I suspect that @vnp is, as well).
$endgroup$
add a comment |
$begingroup$
I created a rudimentary pull request to your GitHub repo. I won't show all of the content here except for the main file:
import numpy as np
import itertools as it
import math
import re
def permutation(m, n):
return math.factorial(n) / (math.factorial(n - m) * math.factorial(m))
def matrix_combinations(matr, n):
timed = list(map(list, it.combinations(matr, n)))
for i in range(n):
timed[i][i][i] = np.asscalar(timed[i][i][i])
return np.array(list(timed))
def array_combinations(arr, n):
timed = list(map(list, it.combinations(arr, n)))
for i in range(n):
timed[i][i] = np.asscalar(timed[i][i])
return np.array(list(timed))
def check_extreme(matr, arr, x, sym_comb, m):
sym_comb = sym_comb.replace(']', '')
sym_comb = sym_comb.replace('[', '')
sym_comb = re.split("[ ,]", sym_comb)
for i in range(m):
td_answer = sum(matr[i] * x)
if sym_comb[i] == '>':
if td_answer <= arr[i]:
return 0
elif sym_comb[i] == '>=':
if td_answer < arr[i]:
return 0
elif sym_comb[i] == '<':
if td_answer >= arr[i]:
return 0
elif sym_comb[i] == '<=':
if td_answer > arr[i]:
return 0
elif sym_comb[i] == '=':
if td_answer != arr[i]:
return 0
elif sym_comb[i] == '!=':
if td_answer == arr[i]:
return 0
else:
return 0
return 1
def extreme_points(m, n, A, b, sym_comb):
# Input
A = np.array(A).reshape(m, n)
b = np.array(b).reshape(m, 1)
# Process
ans_comb = np.zeros((1, n))
arr_comb = array_combinations(b, n)
matr_comb = matrix_combinations(A, n)
for i in range(int(permutation(n, m))):
if np.linalg.det(matr_comb[i]) != 0:
x = np.linalg.solve(matr_comb[i], arr_comb[i])
ans_comb = np.vstack([ans_comb, x])
ans_comb = np.delete(ans_comb, 0, axis=0)
j = 0
for i in range(len(ans_comb)):
if check_extreme(A, b, ans_comb[j], sym_comb, m):
ans_comb = ans_comb
j = j + 1
else:
ans_comb = np.delete(ans_comb, j, axis=0)
# Output
return ans_comb
This is a first cut mainly for PEP8 compliance, and doesn't solve the bigger issue that you should replace 99% of this with a call to scipy. I'll do that separately (I suspect that @vnp is, as well).
$endgroup$
add a comment |
$begingroup$
I created a rudimentary pull request to your GitHub repo. I won't show all of the content here except for the main file:
import numpy as np
import itertools as it
import math
import re
def permutation(m, n):
return math.factorial(n) / (math.factorial(n - m) * math.factorial(m))
def matrix_combinations(matr, n):
timed = list(map(list, it.combinations(matr, n)))
for i in range(n):
timed[i][i][i] = np.asscalar(timed[i][i][i])
return np.array(list(timed))
def array_combinations(arr, n):
timed = list(map(list, it.combinations(arr, n)))
for i in range(n):
timed[i][i] = np.asscalar(timed[i][i])
return np.array(list(timed))
def check_extreme(matr, arr, x, sym_comb, m):
sym_comb = sym_comb.replace(']', '')
sym_comb = sym_comb.replace('[', '')
sym_comb = re.split("[ ,]", sym_comb)
for i in range(m):
td_answer = sum(matr[i] * x)
if sym_comb[i] == '>':
if td_answer <= arr[i]:
return 0
elif sym_comb[i] == '>=':
if td_answer < arr[i]:
return 0
elif sym_comb[i] == '<':
if td_answer >= arr[i]:
return 0
elif sym_comb[i] == '<=':
if td_answer > arr[i]:
return 0
elif sym_comb[i] == '=':
if td_answer != arr[i]:
return 0
elif sym_comb[i] == '!=':
if td_answer == arr[i]:
return 0
else:
return 0
return 1
def extreme_points(m, n, A, b, sym_comb):
# Input
A = np.array(A).reshape(m, n)
b = np.array(b).reshape(m, 1)
# Process
ans_comb = np.zeros((1, n))
arr_comb = array_combinations(b, n)
matr_comb = matrix_combinations(A, n)
for i in range(int(permutation(n, m))):
if np.linalg.det(matr_comb[i]) != 0:
x = np.linalg.solve(matr_comb[i], arr_comb[i])
ans_comb = np.vstack([ans_comb, x])
ans_comb = np.delete(ans_comb, 0, axis=0)
j = 0
for i in range(len(ans_comb)):
if check_extreme(A, b, ans_comb[j], sym_comb, m):
ans_comb = ans_comb
j = j + 1
else:
ans_comb = np.delete(ans_comb, j, axis=0)
# Output
return ans_comb
This is a first cut mainly for PEP8 compliance, and doesn't solve the bigger issue that you should replace 99% of this with a call to scipy. I'll do that separately (I suspect that @vnp is, as well).
$endgroup$
I created a rudimentary pull request to your GitHub repo. I won't show all of the content here except for the main file:
import numpy as np
import itertools as it
import math
import re
def permutation(m, n):
return math.factorial(n) / (math.factorial(n - m) * math.factorial(m))
def matrix_combinations(matr, n):
timed = list(map(list, it.combinations(matr, n)))
for i in range(n):
timed[i][i][i] = np.asscalar(timed[i][i][i])
return np.array(list(timed))
def array_combinations(arr, n):
timed = list(map(list, it.combinations(arr, n)))
for i in range(n):
timed[i][i] = np.asscalar(timed[i][i])
return np.array(list(timed))
def check_extreme(matr, arr, x, sym_comb, m):
sym_comb = sym_comb.replace(']', '')
sym_comb = sym_comb.replace('[', '')
sym_comb = re.split("[ ,]", sym_comb)
for i in range(m):
td_answer = sum(matr[i] * x)
if sym_comb[i] == '>':
if td_answer <= arr[i]:
return 0
elif sym_comb[i] == '>=':
if td_answer < arr[i]:
return 0
elif sym_comb[i] == '<':
if td_answer >= arr[i]:
return 0
elif sym_comb[i] == '<=':
if td_answer > arr[i]:
return 0
elif sym_comb[i] == '=':
if td_answer != arr[i]:
return 0
elif sym_comb[i] == '!=':
if td_answer == arr[i]:
return 0
else:
return 0
return 1
def extreme_points(m, n, A, b, sym_comb):
# Input
A = np.array(A).reshape(m, n)
b = np.array(b).reshape(m, 1)
# Process
ans_comb = np.zeros((1, n))
arr_comb = array_combinations(b, n)
matr_comb = matrix_combinations(A, n)
for i in range(int(permutation(n, m))):
if np.linalg.det(matr_comb[i]) != 0:
x = np.linalg.solve(matr_comb[i], arr_comb[i])
ans_comb = np.vstack([ans_comb, x])
ans_comb = np.delete(ans_comb, 0, axis=0)
j = 0
for i in range(len(ans_comb)):
if check_extreme(A, b, ans_comb[j], sym_comb, m):
ans_comb = ans_comb
j = j + 1
else:
ans_comb = np.delete(ans_comb, j, axis=0)
# Output
return ans_comb
This is a first cut mainly for PEP8 compliance, and doesn't solve the bigger issue that you should replace 99% of this with a call to scipy. I'll do that separately (I suspect that @vnp is, as well).
answered 2 hours ago
ReinderienReinderien
5,474928
5,474928
add a comment |
add a comment |
Andrey Lovyagin is a new contributor. Be nice, and check out our Code of Conduct.
Andrey Lovyagin is a new contributor. Be nice, and check out our Code of Conduct.
Andrey Lovyagin is a new contributor. Be nice, and check out our Code of Conduct.
Andrey Lovyagin is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f217855%2fsearching-extreme-points-of-polyhedron%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Can you provide some more information on what exactly is going on, from a math standpoint? Is this actually a polyhedron, or a polytope? In how many dimensions? By "extreme", what do you mean? Euclidean norm from (the origin, an arbitrary point)?
$endgroup$
– Reinderien
4 hours ago
$begingroup$
"there is still no code in public for searching extreme points for polyhedral with n dimensions" - I can nearly guarantee that that isn't the case.
$endgroup$
– Reinderien
4 hours ago
1
$begingroup$
@Reinderien I am still in the process of deciphering the question. I have a math background, and I share the mother tongue with OP. My impression is that by extremal points OP means the vertices of a simplex where a certain linear form (defined by
A
,b
, and the condition) achieves an extremum. I could be wrong.$endgroup$
– vnp
2 hours ago
$begingroup$
@vnp That's kind of what I guessed, and if that's the case, linear programming is a quite well-established field already - with some stuff built right into scipy.
$endgroup$
– Reinderien
2 hours ago
$begingroup$
@Reinderien Agreed. Still deciphering.
$endgroup$
– vnp
2 hours ago