How to use Pandas to get the count of every combination inclusive





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







7















I am trying to figure out what combination of clothing customers are buying together. I can figure out the exact combination, but the problem I can't figure out is the count that includes the combination + others.



For example, I have:



Cust_num  Item    Rev
Cust1 Shirt1 $40
Cust1 Shirt2 $40
Cust1 Shorts1 $40
Cust2 Shirt1 $40
Cust2 Shorts1 $40


This should result in:



Combo                  Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2


The best I can do is unique combinations:



Combo                 Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 1


I tried:



df = df.pivot(index='Cust_num',columns='Item').sum()
df[df.notnull()] = "x"
df = df.loc[:,"Shirt1":].replace("x", pd.Series(df.columns, df.columns))
col = df.stack().groupby(level=0).apply(','.join)
df2 = pd.DataFrame(col)
df2.groupby([0]).size().reset_index(name='counts')


But that is just the unique counts.










share|improve this question







New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 2





    I feel like this is one sort of problem pandas would not be suitable for.

    – coldspeed
    1 hour ago


















7















I am trying to figure out what combination of clothing customers are buying together. I can figure out the exact combination, but the problem I can't figure out is the count that includes the combination + others.



For example, I have:



Cust_num  Item    Rev
Cust1 Shirt1 $40
Cust1 Shirt2 $40
Cust1 Shorts1 $40
Cust2 Shirt1 $40
Cust2 Shorts1 $40


This should result in:



Combo                  Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2


The best I can do is unique combinations:



Combo                 Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 1


I tried:



df = df.pivot(index='Cust_num',columns='Item').sum()
df[df.notnull()] = "x"
df = df.loc[:,"Shirt1":].replace("x", pd.Series(df.columns, df.columns))
col = df.stack().groupby(level=0).apply(','.join)
df2 = pd.DataFrame(col)
df2.groupby([0]).size().reset_index(name='counts')


But that is just the unique counts.










share|improve this question







New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 2





    I feel like this is one sort of problem pandas would not be suitable for.

    – coldspeed
    1 hour ago














7












7








7








I am trying to figure out what combination of clothing customers are buying together. I can figure out the exact combination, but the problem I can't figure out is the count that includes the combination + others.



For example, I have:



Cust_num  Item    Rev
Cust1 Shirt1 $40
Cust1 Shirt2 $40
Cust1 Shorts1 $40
Cust2 Shirt1 $40
Cust2 Shorts1 $40


This should result in:



Combo                  Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2


The best I can do is unique combinations:



Combo                 Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 1


I tried:



df = df.pivot(index='Cust_num',columns='Item').sum()
df[df.notnull()] = "x"
df = df.loc[:,"Shirt1":].replace("x", pd.Series(df.columns, df.columns))
col = df.stack().groupby(level=0).apply(','.join)
df2 = pd.DataFrame(col)
df2.groupby([0]).size().reset_index(name='counts')


But that is just the unique counts.










share|improve this question







New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












I am trying to figure out what combination of clothing customers are buying together. I can figure out the exact combination, but the problem I can't figure out is the count that includes the combination + others.



For example, I have:



Cust_num  Item    Rev
Cust1 Shirt1 $40
Cust1 Shirt2 $40
Cust1 Shorts1 $40
Cust2 Shirt1 $40
Cust2 Shorts1 $40


This should result in:



Combo                  Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2


The best I can do is unique combinations:



Combo                 Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 1


I tried:



df = df.pivot(index='Cust_num',columns='Item').sum()
df[df.notnull()] = "x"
df = df.loc[:,"Shirt1":].replace("x", pd.Series(df.columns, df.columns))
col = df.stack().groupby(level=0).apply(','.join)
df2 = pd.DataFrame(col)
df2.groupby([0]).size().reset_index(name='counts')


But that is just the unique counts.







python pandas






share|improve this question







New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









Taylor SmithTaylor Smith

392




392




New contributor




Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Taylor Smith is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 2





    I feel like this is one sort of problem pandas would not be suitable for.

    – coldspeed
    1 hour ago














  • 2





    I feel like this is one sort of problem pandas would not be suitable for.

    – coldspeed
    1 hour ago








2




2





I feel like this is one sort of problem pandas would not be suitable for.

– coldspeed
1 hour ago





I feel like this is one sort of problem pandas would not be suitable for.

– coldspeed
1 hour ago












4 Answers
4






active

oldest

votes


















4














Using pandas.DataFrame.groupby:



grouped_item = df.groupby('Cust_num')['Item']
subsets = grouped_item.apply(lambda x: set(x)).tolist()
Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
combo = grouped_item.apply(lambda x:','.join(x))
combo = combo.reset_index()
combo['Count']=Count


Output:



  Cust_num                   Item  Count
0 Cust1 Shirt1,Shirt2,Shorts1 1
1 Cust2 Shirt1,Shorts1 2





share|improve this answer































    1














    I think you need to create a combination of items first.



    How to get all possible combinations of a list’s elements?



    I used the function from Dan H's answer.



    from itertools import chain, combinations
    def all_subsets(ss):
    return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))


    Then get the unique items.



    uq_items = df.Item.unique()

    list(all_subsets(uq_items))

    [(),
    ('Shirt1',),
    ('Shirt2',),
    ('Shorts1',),
    ('Shirt1', 'Shirt2'),
    ('Shirt1', 'Shorts1'),
    ('Shirt2', 'Shorts1'),
    ('Shirt1', 'Shirt2', 'Shorts1')]


    And use groupby each customer to get their items combination.



    ls = 

    for _, d in df.groupby('Cust_num', group_keys=False):
    # Get all possible subset of items
    pi = np.array(list(all_subsets(d.Item)))

    # Fliter only > 1
    ls.append(pi[[len(l) > 1 for l in pi]])


    Then convert to Series and use value_counts().



    pd.Series(np.concatenate(ls)).value_counts()

    (Shirt1, Shorts1) 2
    (Shirt2, Shorts1) 1
    (Shirt1, Shirt2, Shorts1) 1
    (Shirt1, Shirt2) 1





    share|improve this answer































      1














      Late answer, but you can use:



      df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns={"Cust_num": "Count"})
      df['Count'] = df['Count'].str.replace(r'Cust','')




      combo                   Count                 
      Shirt1,Shirt2,Shorts1 1
      Shirt1,Shorts1 2





      share|improve this answer

































        -1














        My version which I believe is easier to understand



        new_df = df.groupby("Cust_num").agg({lambda x: ''.join(x.unique())})

        new_df ['count'] = range(1, len(new_df ) + 1)


        Output:



                                    Item      Rev count
        <lambda> <lambda>
        Cust_num
        Cust1 Shirt1 Shirt2 Shorts1 $40 1
        Cust2 Shirt1 Shorts1 $40 2


        Since you do not need the Rev column, you can drop it:



        new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()

        new_df


        Output:



          Cust_num                    Item count
        <lambda>
        0 Cust1 Shirt1 Shirt2 Shorts1 1
        1 Cust2 Shirt1 Shorts1 2





        share|improve this answer


























        • How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

          – Chris
          15 mins ago














        Your Answer






        StackExchange.ifUsing("editor", function () {
        StackExchange.using("externalEditor", function () {
        StackExchange.using("snippets", function () {
        StackExchange.snippets.init();
        });
        });
        }, "code-snippets");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "1"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });






        Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.










        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55565916%2fhow-to-use-pandas-to-get-the-count-of-every-combination-inclusive%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4














        Using pandas.DataFrame.groupby:



        grouped_item = df.groupby('Cust_num')['Item']
        subsets = grouped_item.apply(lambda x: set(x)).tolist()
        Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
        combo = grouped_item.apply(lambda x:','.join(x))
        combo = combo.reset_index()
        combo['Count']=Count


        Output:



          Cust_num                   Item  Count
        0 Cust1 Shirt1,Shirt2,Shorts1 1
        1 Cust2 Shirt1,Shorts1 2





        share|improve this answer




























          4














          Using pandas.DataFrame.groupby:



          grouped_item = df.groupby('Cust_num')['Item']
          subsets = grouped_item.apply(lambda x: set(x)).tolist()
          Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
          combo = grouped_item.apply(lambda x:','.join(x))
          combo = combo.reset_index()
          combo['Count']=Count


          Output:



            Cust_num                   Item  Count
          0 Cust1 Shirt1,Shirt2,Shorts1 1
          1 Cust2 Shirt1,Shorts1 2





          share|improve this answer


























            4












            4








            4







            Using pandas.DataFrame.groupby:



            grouped_item = df.groupby('Cust_num')['Item']
            subsets = grouped_item.apply(lambda x: set(x)).tolist()
            Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
            combo = grouped_item.apply(lambda x:','.join(x))
            combo = combo.reset_index()
            combo['Count']=Count


            Output:



              Cust_num                   Item  Count
            0 Cust1 Shirt1,Shirt2,Shorts1 1
            1 Cust2 Shirt1,Shorts1 2





            share|improve this answer













            Using pandas.DataFrame.groupby:



            grouped_item = df.groupby('Cust_num')['Item']
            subsets = grouped_item.apply(lambda x: set(x)).tolist()
            Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
            combo = grouped_item.apply(lambda x:','.join(x))
            combo = combo.reset_index()
            combo['Count']=Count


            Output:



              Cust_num                   Item  Count
            0 Cust1 Shirt1,Shirt2,Shorts1 1
            1 Cust2 Shirt1,Shorts1 2






            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 1 hour ago









            ChrisChris

            3,708422




            3,708422

























                1














                I think you need to create a combination of items first.



                How to get all possible combinations of a list’s elements?



                I used the function from Dan H's answer.



                from itertools import chain, combinations
                def all_subsets(ss):
                return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))


                Then get the unique items.



                uq_items = df.Item.unique()

                list(all_subsets(uq_items))

                [(),
                ('Shirt1',),
                ('Shirt2',),
                ('Shorts1',),
                ('Shirt1', 'Shirt2'),
                ('Shirt1', 'Shorts1'),
                ('Shirt2', 'Shorts1'),
                ('Shirt1', 'Shirt2', 'Shorts1')]


                And use groupby each customer to get their items combination.



                ls = 

                for _, d in df.groupby('Cust_num', group_keys=False):
                # Get all possible subset of items
                pi = np.array(list(all_subsets(d.Item)))

                # Fliter only > 1
                ls.append(pi[[len(l) > 1 for l in pi]])


                Then convert to Series and use value_counts().



                pd.Series(np.concatenate(ls)).value_counts()

                (Shirt1, Shorts1) 2
                (Shirt2, Shorts1) 1
                (Shirt1, Shirt2, Shorts1) 1
                (Shirt1, Shirt2) 1





                share|improve this answer




























                  1














                  I think you need to create a combination of items first.



                  How to get all possible combinations of a list’s elements?



                  I used the function from Dan H's answer.



                  from itertools import chain, combinations
                  def all_subsets(ss):
                  return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))


                  Then get the unique items.



                  uq_items = df.Item.unique()

                  list(all_subsets(uq_items))

                  [(),
                  ('Shirt1',),
                  ('Shirt2',),
                  ('Shorts1',),
                  ('Shirt1', 'Shirt2'),
                  ('Shirt1', 'Shorts1'),
                  ('Shirt2', 'Shorts1'),
                  ('Shirt1', 'Shirt2', 'Shorts1')]


                  And use groupby each customer to get their items combination.



                  ls = 

                  for _, d in df.groupby('Cust_num', group_keys=False):
                  # Get all possible subset of items
                  pi = np.array(list(all_subsets(d.Item)))

                  # Fliter only > 1
                  ls.append(pi[[len(l) > 1 for l in pi]])


                  Then convert to Series and use value_counts().



                  pd.Series(np.concatenate(ls)).value_counts()

                  (Shirt1, Shorts1) 2
                  (Shirt2, Shorts1) 1
                  (Shirt1, Shirt2, Shorts1) 1
                  (Shirt1, Shirt2) 1





                  share|improve this answer


























                    1












                    1








                    1







                    I think you need to create a combination of items first.



                    How to get all possible combinations of a list’s elements?



                    I used the function from Dan H's answer.



                    from itertools import chain, combinations
                    def all_subsets(ss):
                    return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))


                    Then get the unique items.



                    uq_items = df.Item.unique()

                    list(all_subsets(uq_items))

                    [(),
                    ('Shirt1',),
                    ('Shirt2',),
                    ('Shorts1',),
                    ('Shirt1', 'Shirt2'),
                    ('Shirt1', 'Shorts1'),
                    ('Shirt2', 'Shorts1'),
                    ('Shirt1', 'Shirt2', 'Shorts1')]


                    And use groupby each customer to get their items combination.



                    ls = 

                    for _, d in df.groupby('Cust_num', group_keys=False):
                    # Get all possible subset of items
                    pi = np.array(list(all_subsets(d.Item)))

                    # Fliter only > 1
                    ls.append(pi[[len(l) > 1 for l in pi]])


                    Then convert to Series and use value_counts().



                    pd.Series(np.concatenate(ls)).value_counts()

                    (Shirt1, Shorts1) 2
                    (Shirt2, Shorts1) 1
                    (Shirt1, Shirt2, Shorts1) 1
                    (Shirt1, Shirt2) 1





                    share|improve this answer













                    I think you need to create a combination of items first.



                    How to get all possible combinations of a list’s elements?



                    I used the function from Dan H's answer.



                    from itertools import chain, combinations
                    def all_subsets(ss):
                    return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))


                    Then get the unique items.



                    uq_items = df.Item.unique()

                    list(all_subsets(uq_items))

                    [(),
                    ('Shirt1',),
                    ('Shirt2',),
                    ('Shorts1',),
                    ('Shirt1', 'Shirt2'),
                    ('Shirt1', 'Shorts1'),
                    ('Shirt2', 'Shorts1'),
                    ('Shirt1', 'Shirt2', 'Shorts1')]


                    And use groupby each customer to get their items combination.



                    ls = 

                    for _, d in df.groupby('Cust_num', group_keys=False):
                    # Get all possible subset of items
                    pi = np.array(list(all_subsets(d.Item)))

                    # Fliter only > 1
                    ls.append(pi[[len(l) > 1 for l in pi]])


                    Then convert to Series and use value_counts().



                    pd.Series(np.concatenate(ls)).value_counts()

                    (Shirt1, Shorts1) 2
                    (Shirt2, Shorts1) 1
                    (Shirt1, Shirt2, Shorts1) 1
                    (Shirt1, Shirt2) 1






                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered 42 mins ago









                    ResidentSleeperResidentSleeper

                    36210




                    36210























                        1














                        Late answer, but you can use:



                        df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns={"Cust_num": "Count"})
                        df['Count'] = df['Count'].str.replace(r'Cust','')




                        combo                   Count                 
                        Shirt1,Shirt2,Shorts1 1
                        Shirt1,Shorts1 2





                        share|improve this answer






























                          1














                          Late answer, but you can use:



                          df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns={"Cust_num": "Count"})
                          df['Count'] = df['Count'].str.replace(r'Cust','')




                          combo                   Count                 
                          Shirt1,Shirt2,Shorts1 1
                          Shirt1,Shorts1 2





                          share|improve this answer




























                            1












                            1








                            1







                            Late answer, but you can use:



                            df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns={"Cust_num": "Count"})
                            df['Count'] = df['Count'].str.replace(r'Cust','')




                            combo                   Count                 
                            Shirt1,Shirt2,Shorts1 1
                            Shirt1,Shorts1 2





                            share|improve this answer















                            Late answer, but you can use:



                            df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns={"Cust_num": "Count"})
                            df['Count'] = df['Count'].str.replace(r'Cust','')




                            combo                   Count                 
                            Shirt1,Shirt2,Shorts1 1
                            Shirt1,Shorts1 2






                            share|improve this answer














                            share|improve this answer



                            share|improve this answer








                            edited 13 mins ago

























                            answered 40 mins ago









                            Pedro LobitoPedro Lobito

                            50.5k16138172




                            50.5k16138172























                                -1














                                My version which I believe is easier to understand



                                new_df = df.groupby("Cust_num").agg({lambda x: ''.join(x.unique())})

                                new_df ['count'] = range(1, len(new_df ) + 1)


                                Output:



                                                            Item      Rev count
                                <lambda> <lambda>
                                Cust_num
                                Cust1 Shirt1 Shirt2 Shorts1 $40 1
                                Cust2 Shirt1 Shorts1 $40 2


                                Since you do not need the Rev column, you can drop it:



                                new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()

                                new_df


                                Output:



                                  Cust_num                    Item count
                                <lambda>
                                0 Cust1 Shirt1 Shirt2 Shorts1 1
                                1 Cust2 Shirt1 Shorts1 2





                                share|improve this answer


























                                • How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

                                  – Chris
                                  15 mins ago


















                                -1














                                My version which I believe is easier to understand



                                new_df = df.groupby("Cust_num").agg({lambda x: ''.join(x.unique())})

                                new_df ['count'] = range(1, len(new_df ) + 1)


                                Output:



                                                            Item      Rev count
                                <lambda> <lambda>
                                Cust_num
                                Cust1 Shirt1 Shirt2 Shorts1 $40 1
                                Cust2 Shirt1 Shorts1 $40 2


                                Since you do not need the Rev column, you can drop it:



                                new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()

                                new_df


                                Output:



                                  Cust_num                    Item count
                                <lambda>
                                0 Cust1 Shirt1 Shirt2 Shorts1 1
                                1 Cust2 Shirt1 Shorts1 2





                                share|improve this answer


























                                • How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

                                  – Chris
                                  15 mins ago
















                                -1












                                -1








                                -1







                                My version which I believe is easier to understand



                                new_df = df.groupby("Cust_num").agg({lambda x: ''.join(x.unique())})

                                new_df ['count'] = range(1, len(new_df ) + 1)


                                Output:



                                                            Item      Rev count
                                <lambda> <lambda>
                                Cust_num
                                Cust1 Shirt1 Shirt2 Shorts1 $40 1
                                Cust2 Shirt1 Shorts1 $40 2


                                Since you do not need the Rev column, you can drop it:



                                new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()

                                new_df


                                Output:



                                  Cust_num                    Item count
                                <lambda>
                                0 Cust1 Shirt1 Shirt2 Shorts1 1
                                1 Cust2 Shirt1 Shorts1 2





                                share|improve this answer















                                My version which I believe is easier to understand



                                new_df = df.groupby("Cust_num").agg({lambda x: ''.join(x.unique())})

                                new_df ['count'] = range(1, len(new_df ) + 1)


                                Output:



                                                            Item      Rev count
                                <lambda> <lambda>
                                Cust_num
                                Cust1 Shirt1 Shirt2 Shorts1 $40 1
                                Cust2 Shirt1 Shorts1 $40 2


                                Since you do not need the Rev column, you can drop it:



                                new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()

                                new_df


                                Output:



                                  Cust_num                    Item count
                                <lambda>
                                0 Cust1 Shirt1 Shirt2 Shorts1 1
                                1 Cust2 Shirt1 Shorts1 2






                                share|improve this answer














                                share|improve this answer



                                share|improve this answer








                                edited 12 mins ago

























                                answered 22 mins ago









                                Lee MtotiLee Mtoti

                                13110




                                13110













                                • How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

                                  – Chris
                                  15 mins ago





















                                • How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

                                  – Chris
                                  15 mins ago



















                                How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

                                – Chris
                                15 mins ago







                                How is the count in your answer the count of inclusive combination of df['Item']? Making new column with range is not an answer.

                                – Chris
                                15 mins ago












                                Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.










                                draft saved

                                draft discarded


















                                Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.













                                Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.












                                Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.
















                                Thanks for contributing an answer to Stack Overflow!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55565916%2fhow-to-use-pandas-to-get-the-count-of-every-combination-inclusive%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Liste der Baudenkmale in Friedland (Mecklenburg)

                                Single-Malt-Whisky

                                Czorneboh