Digital Audio Broadcasting








Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres sollte auf der Diskussionsseite angegeben sein. Bitte hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.



Logo Digital Audio Broadcasting


Digital Audio Broadcasting (DAB) ist ein digitaler Übertragungsstandard für terrestrischen Empfang von Digitalradio. Es ist für den Frequenzbereich von 30 MHz bis 3 GHz geeignet und schließt daher auch die Verbreitung von Hörfunkprogrammen über Kabel und Satellit ein. Entwickelt wurde DAB im Eureka-147-Projekt der EU in den Jahren 1987–2000. Der DAB-Standard ist unter dem Code EN 300 401 online von der europäischen Standardisierungsorganisation ETSI erhältlich.[1]




Inhaltsverzeichnis






  • 1 Verfügbarkeit


  • 2 Idee und Systementwicklung


    • 2.1 Erste Versuche


    • 2.2 Systementwicklung




  • 3 Frequenzen


  • 4 Marktsituation und konkurrierende Systeme


  • 5 Marktübersicht zwischen DAB und DAB+


  • 6 Technik


    • 6.1 Datenrahmen


    • 6.2 Signalaufbau und Abstrahlung


    • 6.3 Übertragungsmodi


    • 6.4 Audio-Kodierungsverfahren


      • 6.4.1 DAB


      • 6.4.2 DAB+


      • 6.4.3 DAB Surround






  • 7 Datendienste


  • 8 Literatur


  • 9 Weblinks


  • 10 Einzelnachweise





Verfügbarkeit |







Die Listen der DAB-Sender sind – soweit verfügbar – in den jeweiligen DAB-Landesartikeln verlinkt.






  • Länder mit regelmäßigem Dienst

  • Länder mit Tests

  • interessierte Länder

  • Länder, die DAB wieder abgeschafft haben



  • Weltweit sind in 35 Ländern DAB-Sender im Betrieb, womit über 400 Millionen Menschen erreicht werden können. Es wurden über 50 Millionen Empfangsgeräte verkauft, davon zwölf Millionen Autoradios (Stand: Oktober 2016).[2]


    In den meisten europäischen Ländern wie Deutschland, der Schweiz, Belgien, den Niederlanden, Dänemark und dem Vereinigten Königreich ist DAB fast flächendeckend verfügbar. In Frankreich ist es bisher nur in einzelnen Metropolregionen, wie Paris, Marseille oder Nizza, verfügbar. In Italien treiben vor allem die Privatsender den DAB-Ausbau in den norditalienischen Großräumen voran. In Österreich hingegen wurde der seit 2000 laufende Versuchsbetrieb 2008 eingestellt. Im Raum Wien fand/findet seit dem 28. Mai 2015 bis auf Weiteres ein neuerlicher Pilotbetrieb von DAB+ statt.[3]


    In Kanada wurden bis 2011 einige Ballungsräume in Ontario, Québec und British Columbia versorgt.[4]



    Idee und Systementwicklung |





    Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten daher möglicherweise demnächst entfernt werden. Bitte hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst.


    Aufgrund der physikalischen Gegebenheiten kann bei analogen terrestrischen UKW-Sendernetzen für eine flächendeckende Versorgung mit einem Radioprogramm dieselbe Frequenz nur in einem größeren – von der Topografie abhängigen – geografischen Abstand wieder verwendet werden. So konnten zur Zeit der Entwicklung von DAB in dem von UKW genutzten Frequenzbereich 87,5–108 MHz nur sechs oder sieben flächendeckende Senderketten (neben weiteren einzelnen Sendern für eine lokale bzw. regionale Versorgung) betrieben werden.[5]


    Die Entwicklung des dualen Rundfunksystems ab 1983 in Deutschland hatte zu einer Anzahl weiterer, von privaten Programmveranstaltern produzierten Radioprogrammen geführt, für die meist keine UKW-Frequenzen mehr zur Verfügung standen. Die öffentlich-rechtlichen Rundfunkanstalten Deutschlands sahen sich daher veranlasst – auch mit Blick auf die Störanfälligkeit beim mobilen UKW-Empfang – ein neues, digitales Übertragungssystem zu entwickeln. So entstanden beim Institut für Rundfunktechnik (IRT) erste Vorschläge, aus denen sich dann später Digital Audio Broadcasting (DAB) entwickelte.


    Die zwei herausragenden innovativen Entwicklungsansätze des digitalen terrestrischen Übertragungssystems DAB sind einerseits die Informationskompression des Tonsignals (Quellkodierung) und andererseits die technische Beherrschung der physikalisch bedingten Mehrwegeausbreitungsproblematik bei der Funkwellenübertragung. Beide Problematiken konnten erst mit dem rasanten Fortschritt der Entwicklung der Mikroelektronik technisch und wirtschaftlich gelöst werden.[6]



    Erste Versuche |


    Auf Einladung des Technischen Direktors des Bayerischen Rundfunks, Frank Müller-Römer, fand am 16. Dezember 1981 eine von Wolfgang Klimek, Mitglied des IDR-Arbeitskreises (Initiative Digitaler Rundfunk) angeregte Diskussionsveranstaltung zum Thema „Digitaler UKW-Rundfunk“ statt, an der auch die Professoren Hans Georg Musmann und Georg Plenge, Institut für Rundfunktechnik (IRT), München, über ihre Überlegungen zu diesem Thema berichteten. Als Ergebnis wurde die Auffassung vertreten, dass es im Prinzip möglich sein müsse, im UKW-Bereich anstelle eines Analogsignals auch ein digital kodiertes Hörfunksignal in Stereo zu übertragen. Das IRT griff den Vorschlag auf und entwickelte in den Folgejahren ein Konzept für ein digitales Übertragungssystem, bei dem die Mehrwegeempfangsprobleme bei schmalbandiger Ausstrahlung durch ein breitbandig ausgestrahltes Programmbündel vermieden werden könnten. Im Jahre 1985 fanden dann am Sender Gelbelsee des Bayerischen Rundfunks erste Abstrahlversuche statt. Gemeinsam mit dem IRT wurden Gleichkanal- und Nachbarkanalbeeinflussungen sowie Reichweiten digital gesendeter Signale mit UKW-Signalen messtechnisch verglichen.[7]



    Systementwicklung |


    1986 wurde auf der Europäischen Ministerkonferenz in Stockholm entschieden, im EUREKA-Projekt 147 ein digitales Hörfunksystem zu entwickeln. Deutschland übernahm dabei die Federführung (Deutsche Forschungsanstalt für Luft- und Raumfahrt, DLR, in Porz-Wahn). Aufgabenstellung und Anforderungen an das System DAB wurden maßgeblich vom öffentlich-rechtlichen Rundfunk in Deutschland geprägt.[8]



    Frequenzen |




    DAB-Frequenzbereich Band III


    Als Frequenzbereich sind das VHF-Band I (47–68 MHz, aber keine Nutzung für Radio und Fernsehen mehr vorgesehen), DAB-Band III (174–230 MHz), in einigen Ländern der „Kanal 13“ (230–240 MHz) sowie Teile des L-Bandes (um 1,46 GHz) für DAB eingeteilt. Der Frequenzbereich VHF-Band III wird in Deutschland für digitales Radio freigehalten, vereinzelte Fernsehsender im VHF-Band sollen in den UHF-Bereich verlagert werden. Die Frequenzen im L-Band eignen sich auf Grund der geringen Reichweite nur zur lokalen DAB-Versorgung.


    Für DAB werden in Deutschland derzeit die folgenden Frequenzbereiche zur Übertragung verwendet:



    • im VHF-Band III (174–230 MHz) die ehemaligen Fernsehkanäle 5 bis 12

    • im 1,5-GHz-Band („L-Band“, das sogenannte Lokalband), in dem Bereich von 1452 bis 1492 MHz (direkte Sichtverbindung zum Sender nötig, geringe terrestrische Reichweite). Dieser Frequenzbereich wurde kaum für T-DAB genutzt und deswegen im Frühjahr 2015 im Rahmen der Digitalen Dividende II als E-UTRA Band 32 an die LTE-Mobilfunkanbieter Telekom und Vodafone vergeben.[9]


    Die für DAB verwendeten Frequenzbereiche sind in Blöcke unterteilt. Das VHF-Band III enthält beispielsweise die Blöcke 5A bis 12D.


    Das Band III findet überwiegend Verwendung für die überregional ausgestrahlten Ensembles, während das L-Band, aufgrund höherer Kosten, bei DAB zur Ausstrahlung lokaler Ensembles genutzt wurde. Inzwischen wurden aber laufend L-Band-Netze in Band III-Netze „umgewandelt“. Eine sehr langfristige Nutzung des L-Bandes für DAB war nie gesetzlich garantiert.


    Da die Frequenzen im L-Band aufgrund der hohen Frequenz eine höhere Sendeleistung für eine gleichwertige Ausstrahlung im VHF-Band erforderten, wurde DAB im L-Band mit Sendeleistungen von bis zu 4 kW ausgestrahlt.


    Ab dem 30. Mai 2006 wurde im Band III und im L-Band in einigen Ballungsräumen versuchsweise DMB ausgestrahlt, die Tests wurden aber spätestens Mitte 2011 eingestellt.



    Marktsituation und konkurrierende Systeme |




    DAB-III-Empfangsgerät Noxon Nova


    Von 2004 an stand für interessierte Verbraucher eine größere Auswahl an DAB-Empfangsgeräten zur Verfügung, womit ein Hemmnis aus den Anfangsjahren aus dem Weg geräumt wurde. Im Vergleich zu UKW-Empfängern war die Auswahl jedoch immer noch bescheiden. Für 2007 nannte die Uni Bonn eine Zahl von 546.000 DAB-Empfängern in deutschen Haushalten.[10]


    Inzwischen sind fast nur noch Empfänger für DAB+ im Handel erhältlich. Viele Hersteller haben ihre Modelle mit neuen mehrnormfähigen Chips ausgerüstet. Die Schweiz geht davon aus, dass mit der Migration der Sender von DAB auf DAB+ auch die Autogeräteindustrie nachziehen wird und ein ausreichendes Angebot von Autoradioempfängern auch für DAB+ ab 2012 anbieten wird.[11] Auch hier ist es aus wirtschaftlichen Erwägungen heraus kaum möglich, mit DAB allein den UKW-Hörfunk vollständig abzulösen.


    Nach der Entscheidung der Kommission zur Ermittlung des Finanzbedarfs der Rundfunkanstalten (KEF), DAB-Ausstrahlung nicht weiter zu fördern, wurde in Deutschland Radio über DVB-T als Alternative zu DAB diskutiert. Zur versuchsweisen Ausstrahlung von 14 Radiosendern über DVB-T im Raum Berlin kamen zwei Radiosender in Leipzig. Ein in Hamburg und Schleswig-Holstein geplantes geteiltes DVB-T-Bouquet mit bis zu 16 Radioprogrammen kam wegen einer zu geringen Bewerberzahl nicht zustande. In Berlin ist das Radioangebot auf DVB-T mittlerweile wieder gekürzt worden. Auch sind keine mobilen Empfänger, insbesondere Autoradios auf dem Markt. Der Hauptkritikpunkt bei DVB-T-Radio ist die Inkompatibilität zur europäischen Entwicklung und die mangelhafte Mobilität. Ab ca. 120 km/h wird DVB-T nach der aktuellen Spezifikation unbrauchbar.


    Das System Digital Multimedia Broadcasting (DMB) wurde in Deutschland vom Markt nicht angenommen. In Österreich und in der Schweiz wurde es nie eingeführt. Jedoch verwendet Frankreich diesen Standard und die Geräteindustrie hat durch Mehrnormkompatibilität reagiert. Auch über Satellit gab es eine Radioübertragungsnorm, die nach Jahren wegen zu geringer Verbreitung nicht mehr genutzt wurde.


    DAB ist länderbezogen unterschiedlich erfolgreich. Eine gute Übersicht bezüglich des länderspezifischen Ausbaus befindet sich unter Worlddab.org.[12] Eine Übersicht über konkurrierende Standards, terrestrisch und über Satellit, findet sich unter Digitalradio, Abschnitt Tabellarische Übersicht. Die derzeitige Situation in Deutschland lässt den Schluss zu, dass künftig DAB+ als Standard ausgesucht wird und sich als alleinige Radioplattform etablieren wird. Damit wäre zu den europäischen Nachbarn ein gleicher Standard ausgewählt. DVB-T hat sich durch diverse fehlgeschlagene Ausschreibungen nicht als Ersatz für DAB+ gezeigt.[13] Dadurch dürfte wohl DAB+ als „Sieger“ der Systeme hervorgegangen sein.[14]


    Offiziell erklärtes Ziel der Europäischen Kommission war es, analoges Fernsehen und Hörfunk einschließlich des UKW-Rundfunks bis zum Jahr 2012 (siehe Analogabschaltung) abzulösen. Dieses Ziel wurde nicht erreicht.


    Im Jahr 2013 betrug der Anteil der DAB-Radiogeräte in Deutschland 4,5 Prozent. Das waren etwa 2,7 Millionen DAB-Geräte.[15] Im Jahr 2014 gab es deutschlandweit etwa 5 Millionen DAB-Geräte.[16] Insbesondere bei Autoradios gab es im Jahr 2014 eine enorme Steigerung zum Vorjahr um 108 % auf 1,3 Millionen DAB-Geräte.[17]


    Im Jahr 2014 empfingen 7,5 Prozent der Haushalte in Deutschland Radio über DAB.[18] Im Jahr 2015 empfangen 10 Prozent der Haushalte in Deutschland Radio über DAB+, d. h. dass etwa 4 Millionen Haushalte in Deutschland 2015 DAB+ empfangen, etwa eine Million mehr als 2014. 2015 gab es in Deutschland 6,4 Millionen DAB+-Radiogeräte. Etwa 2 Millionen davon sind Autoradiogeräte, was einer Wachstumsrate von etwa 49 Prozent zum Vorjahr entspricht. 4,9 Prozent aller Autoradios in Deutschland sind 2015 DAB+-Geräte.[19] Knapp sechs Millionen Haushalte in der Bundesrepublik verfügten 2017 über mindestens ein DAB+-Radiogerät. Damit haben knapp elf Millionen Menschen in Deutschland Zugang zum DAB+-Digitalradio. Der Anteil der Haushalte mit DAB+ stieg 2017 auf 15,1 Prozent von 12,6 Prozent 2016.[20][21]



    Marktübersicht zwischen DAB und DAB+ |


    Seit Ende 2011 wächst in Deutschland die Zahl der Programme, die per DAB+ ausgestrahlt werden. In der Schweiz mit einem großen Angebot an DAB-Plus-Sendern bieten die großen Warenhäuser und Elektronikmärkte fast ausschließlich DAB+-Geräte an. Einfache Empfänger für DAB+ werden dort ab etwa umgerechnet 55 Euro verkauft, eine größere Auswahl steht ab ungefähr 100 Euro zur Verfügung. Das Angebot an Autoradios in DIN-Größen mit DAB-Plus-Kompatibilität (ab 100 Euro) begrenzt sich auf ein bis drei Modelle von einer Handvoll Herstellern. Für Hifi-Komponenten gelten ähnliche Preise. Je nach Ausstattung sind die Preisspannen deutlich höher als bei UKW-Radioempfängern. Aufgrund der geringen Nachfrage gibt es noch nicht überall in Europa einen gut funktionierenden Wettbewerb.


    Alle seit November 2011 erhältlichen Geräte, die DAB+ empfangen können, sind abwärtskompatibel und können auch DAB-Sendungen nach dem herkömmlichen Verfahren (MPEG-1 Layer 2) empfangen.


    Hersteller bieten in der Regel keine Möglichkeit an, DAB-Geräte auf DAB+ aufzurüsten (Blaupunkt, Kenwood, Pioneer, Roadstar). Für einige Geräte der Firma Roberts ist es jedoch möglich.


    Für PCs gibt es DAB-Plus-Sticks, die über einen USB-Anschluss mit dem PC verbunden werden. Viele dieser Geräte, insbesondere solche mit dem Realtek-RTL2832U-Chipsatz, sind auch als DVB-T-Stick nutzbar.



    Technik |


    Das ausgesendete Signal ist digital und besteht im Wesentlichen aus einer Gruppe von COFDM-Symbolen, die zu Datenrahmen („Frames“, vgl. Datenframe) zusammengefasst werden. Die eigentlichen Daten werden mittels Differentielle-QPSK moduliert, was in einer robusten Signalübertragung mit einer relativ geringen Datenrate resultiert.



    Datenrahmen |


    Die Dauer eines Frames ist abhängig vom gewählten Übertragungsmodus. Das erste Symbol eines Frames ist das Null-Symbol, dem folgen die datentragenden COFDM-Symbole, die alle die gleiche Dauer haben. Die Anzahl der Symbole und ihre Dauer ist mit dem verwendeten Übertragungsmodus gekoppelt. Die exakten Zeiteinheiten ergeben sich aus dem Basistakt von 2,048 MHz, der dem System zu Grunde liegt.


    Die ersten beiden Symbole werden als Synchronisationskanal bezeichnet. Während der Abstrahlung des Null-Symbols wird die ausgestrahlte Signalstärke sehr stark reduziert. Im Zeitbereich (Sichtbarmachung z. B. mit einem Oszilloskop) ergibt sich damit eine deutlich sichtbare, regelmäßige Signalunterbrechung. Mit einer sehr einfachen Auswertungsschaltung kann diese Lücke erkannt und der grobe Anfang eines Frames bestimmt werden. Häufig wird das Null-Symbol zusätzlich zur Signalisierung der im Betrieb befindlichen Sender eines Gleichwellennetzes genutzt (Transmitter Identification Information signal). Hierbei werden einzelne Träger des Null-Symbols moduliert. Aus dem Abstand der modulierten Träger, kann dann auf die Identifikationsnummern der Sender geschlossen werden. Zusammen mit optionalen Informationen aus den Nutzdaten könnten die physischen Senderstandorte bestimmt werden und aus den gemessenen Signallaufzeiten ließe sich die Position des Empfängers bestimmen.


    Jedes nachfolgende Symbol besteht aus einer Nutzlänge und einem vorangestellten Schutzintervall, welches eine Kopie von knapp einem Viertel des Endes der Nutzlänge enthält. Bei Reflexionen oder bei Verwendung von mehreren Sendern im Gleichwellennetz entstehen Verformungen, welche im stationären Betrieb nur auf das zeitlich unterschiedliche Eintreffen der ansonsten bei der Abstrahlung identischen Signale zurückzuführen sind. Das Schutzintervall erlaubt die nahezu verlustfreie Kompensation dieser Signalverformungen.


    Das zweite Symbol, enthält die Referenzinformation, dessen Inhalt im Standard festgelegt ist. Abweichungen zwischen dem empfangenen und idealen Signalverlauf beschreiben die Verformung des Signals im verwendeten Frequenzbereich. Durch den Vergleich von zwei aufeinander folgenden Referenz-Symbolen kann auch die Verformung im Zeitbereich bestimmt werden. Die Verformung im Frequenzbereich resultiert aus Reflexionen und der möglichen Verwendung von mehreren Sendern im Gleichwellennetz, die im Zeitbereich vor allem durch die Verwendung des Empfängers in Bewegung.


    Die an den Synchronisationskanal anschließenden Symbole enthalten zunächst die Daten des Fast Information Channel und daran folgend die eigentlichen Nutzdaten. In den Daten des Fast Information Channel sind u. a. die Namen der ausgestrahlten Programme enthalten.



    Signalaufbau und Abstrahlung |


    Die Verknüpfung der zu übertragenden Daten zu den einzelnen Trägerinformationen ist relativ kompliziert. Um eine gleichmäßigere Verteilung der Bitwerte 0 und 1 zu erreichen, wird der Bitstrom mit einer Pseudozufallsfolge verknüpft, wodurch hohe Spitzenwerte im Ausgang des Senders vermieden werden. Das Ergebnis der Verknüpfung wird dann sowohl im Frequenzbereich (Träger) als auch im Zeitbereich (Symbole) verwürfelt. Abschließend wird auch noch die gewählte Trägermodulation nicht als absolute Information, sondern als Differenz zum vorigen Träger verwendet. Diese Maßnahmen führen zusammen mit der verwendeten Fehlerkorrektur zu einer starken Immunität gegen typische Signalstörungen wie Blitze, die einzelne Symbole unlesbar machen, als auch Einzelfrequenzstörungen, die eng beieinanderliegende Träger dauerhaft überlagern können. Das so erzeugte Basisbandsignal wird nun noch auf die Zielfrequenz transponiert. Als letzte Maßnahme kommt häufig noch eine polarisierte Abstrahlung des Sendesignals zum Einsatz. Hierdurch können senkrecht zur Abstrahlebene stehende Fremdsignale durch geeignete Antennen deutlich abgeschwächt werden.


    Das gesamte Verfahren ist im Vergleich zur analogen, frequenzmodulierten Ausstrahlung deutlich robuster gegenüber dem ungewollten Mehrwegempfang. Dadurch ist es auch möglich, weite Flächen mit nur einer Frequenz abzudecken (Gleichwellennetz). Somit ist die Frequenzökonomie, also der Verbrauch von Spektrum je Programm bei DAB meist deutlich besser als beim herkömmlichen UKW-Rundfunk.[22]



    Übertragungsmodi |


    Für die Übertragung existieren vier Übertragungsmodi, welche sich in diversen Eigenschaften unterscheiden. In Deutschland wird zumeist der Modus I verwendet. Die nachfolgende Tabelle gibt die Systemparameter der vier Übertragungsmodi von DAB wieder.

















































































    Parameter
    Übertragungsmodus
    I
    II
    III
    IV
    Maximale Senderentfernung
    96 km
    24 km
    12 km
    48 km
    OFDM-Symbole pro Frame
    (ohne Null-Symbol)
    76
    76
    153
    76
    Genutzte Trägeranzahl
    1536
    384
    192
    768
    Taktperiode (T)

    12,048MHz (≈ 488,3ns)
    Dauer eines Frames

    0196.608 T (96.000 µs)
    49.152 T (24.000 µs)
    49.152 T (24.000 µs)
    98.304 T (48.000 µs)

    0Dauer Null-Symbol
    2656 T 0(≈ 1297 µs)
    664 T 00.(≈ 324 µs)
    345 T 00.(≈ 168 µs)
    1328 T 00.(≈ 648 µs)

    0Dauer OFDM-Symbole
    2552 T 0(≈ 1246 µs)
    638 T 00.(≈ 312 µs)
    319 T 00.(≈ 156 µs)
    1276 T 00.(≈ 623 µs)

    00Nutzdauer des OFDM-Symbols (Tu)
    2048 T ≈0(1000 µs)
    512 T ≈00.(250 µs)
    256 T ≈00.(125 µs)
    1024 T ≈00.(500 µs)

    00Dauer des Guard Intervalls (Tg)
    504 T 00.(≈ 246 µs)
    126 T 00.0(≈ 62 µs)
    63 T 00.0(≈ 31 µs)
    252 T 00.(≈ 123 µs)
    Bandbreite
    1,536 MHz (Das erlaubt max. vier Kanäle in einem 7-MHz-TV-Kanal-Block unterzubringen)
    Nettodatenrate
    2304 kbit/s

    DAB weist vier länderspezifische Übertragungsmodi (I, II, III und IV) auf. Für eine weltweite Nutzung eines Empfängers muss dieser alle Modi unterstützen. Die Auswahl des Übertragungsmodus ist abhängig von den Betriebsbedingungen.



    • Modus I für Band I, II und III, terrestrisch (Einsatz in Gleichwellennetzen sowie örtlichen Aussendungen)

    • Modus II für I, II, III, IV, V und L-Band, terrestrisch und Satellit (örtliche Aussendungen)

    • Modus III für Frequenzen unter 3 GHz, terrestrisch und Satellit (Übertragungen in Kabelnetzen)

    • Modus IV für I, II, II, IV, V und L-Band, terrestrisch und Satellit (örtliche Aussendungen)




    Audio-Kodierungsverfahren |


    Der Empfang von Sendern, die eine Codierung nach HE-AAC v2 verwenden, ist nur mit DAB-Empfängern möglich, die zusätzlich mit einem entsprechenden Decoder ausgestattet sind. Mit dem Ziel, die Empfänger, die zusätzlich zum MUSICAM auch HE-AAC v2 decodieren können, voneinander zu unterscheiden, wurde von WorldDMB die Bezeichnung „DAB+“ eingeführt. Dabei handelt es sich jedoch um einen reinen Marketingnamen, der nicht Bestandteil des Standards ist.



    DAB |


    Die Audiodaten der Programme werden bei DAB zunächst mittels MUSICAM (MPEG-1 Audio Layer 2 alias MP2) mit Datenraten von 32 bis 256 kbit/s codiert. Die vor der Umstellung der meisten Sender auf DAB+ oft verwendete Bitrate von 160 kbit/s (häufig verwendeter Standard) liegt zwar um den Faktor 7,5 unter der einer Audio-CD, soll aber eine der Audio-CD nahe kommende Qualität erreichen (vgl. Verlustbehaftete Audiodatenkompression).


    Für die DAB-Übertragung werden mehrere Audiodatenströme zusammen mit ebenfalls möglichen reinen Datendiensten zu einem sogenannten Ensemble mit hoher Datenrate zusammengeführt. Der so entstandene Multiplex wird wie oben beschrieben moduliert und ausgestrahlt.


    Ein Nachteil gegenüber dem analogen UKW-Empfang ist der höhere Energieverbrauch der DAB-Empfänger, erkennbar vor allem an der geringen Batterielaufzeit portabler DAB-Geräte. Das gilt nach ersten Erfahrungen auch für alle DAB+-Empfänger.



    DAB+ |


    Um den Qualitätsanspruch auch mit niedrigen Bitraten erfüllen zu können, reichte WorldDMB das Verfahren HE-AAC v2 als ergänzendes Kodierungsverfahren für DAB zur Standardisierung ein. Dabei wird ein zusätzlicher Fehlerschutz (Reed-Solomon-Code) hinzugefügt. DAB+ benutzt damit zwar den gleichen Audiocodec und einen ähnlichen Fehlerschutz wie DMB, unterscheidet sich ansonsten jedoch technisch davon.[23]
    Ein Vergleich der notwendigen Datenraten zwischen MUSICAM (DAB) und HE-AAC v2 (DAB+) ist weniger eine Frage der technischen Festlegung, sondern hängt vor allem vom Anspruch an die Audioqualität und den zu übertragenden Audioinhalten ab. Vor der Einführung von DAB+ hat sich bei der Nutzung von MUSICAM in Deutschland eine Netto-Datenrate von 160 kbit/s etabliert, wobei oft auch noch 128 kbit/s akzeptiert werden. Um ähnliche Qualität mit HE AAC v2 zu erreichen, wird von etwa 80 kbit/s bzw. 72 kbit/s ausgegangen, wobei die Einschätzungen in der Praxis oft sehr variieren. HE-AAC v2 ist sicherlich dazu geeignet, auch bei relativ niedrigen Bitraten noch akzeptable (aber nicht mehr unbedingt artefaktfreie) Audioübertragung zu ermöglichen. DAB+ wurde mit 80 kbit/s eingeführt und kann damit etwa doppelt so viele Audioprogramme in einem Ensemble übertragen wie das herkömmliche DAB-Übertragungsverfahren. Praktisch bedeutet das für DAB+ etwa 12 bis 18 Audioprogramme pro DAB-Ensemble. Umfangreiche praktische Erfahrungen sind in Testensembles ausgiebig gemacht worden. Dabei erreichte DAB+ eine höhere Akzeptanz. Positiv war bei den Tests zu vermerken, dass auch bei sehr niedrigem Empfangspegel die Sendungen nicht gestört wurden. Ab ca. 10 bis 15 Prozent Empfangsstärke war aber nichts mehr zu hören, denn bei DAB+ rauscht (wie bei UKW) oder „blubbert“ (DAB) es nicht mehr, sondern der Empfang bricht abrupt ab.



    DAB Surround |


    DAB Surround ermöglicht Raumklang mit 5.1 oder 7.1 Kanälen. Dies wird durch die Kombination eines Mono- oder Stereosignals in MPEG-1 Audio Layer 2 (DAB) oder HE-AACv2 (DAB+) mit MPEG Surround erreicht.[24] Geräte, die MPEG Surround nicht unterstützen, geben in diesem Fall lediglich das Mono-/Stereosignal wieder.



    Datendienste |




    Beispiel für die MOT SlideShow


    Neben der reinen Audioübertragung sind folgende Datendienste und Typen in DAB bereits spezifiziert:



    MOT

    (Multimedia Object Transfer Protocol, ETSI-Standard EN 301 234): MOT ist ein Protokoll, um in einem Broadcast-Verfahren beliebige Dateien an alle Empfänger zu übertragen. Im Gegensatz zu FTP und anderen IP-bezogenen Protokollen berücksichtigt MOT die Schwierigkeiten bei einer unidirektionalen Verbindung. Dateien werden als Segmente übertragen, die wiederholt werden können, so dass der Empfänger die vollständige Datei über die Zeit hinweg zusammensammeln kann (ähnlich wie bei Videotext). Spezielle Zusatzinformation (im MOT-Header) beschreiben das übertragene Objekt sowie weitere Attribute (Kompression, Anwendungstyp etc.). MOT ist die Basis für das Broadcast-Website-Verfahren (BWS), mit dem einem Empfänger ein ganzer HTML-Baum mit Startseiten und interaktiven Elementen übertragen werden kann. Weiterhin können Radiosender die MOT SlideShow (SLS) nutzen, um grafisch aufbereitete Zusatzinformationen an ihre Hörer zu übertragen. Die Verbreitung des Journaline-Datendienstes, der hierarchisch organisierte Textnachrichten bereitstellt, erfolgt ebenfalls via MOT.

    MOT kann entweder programmbegleitend im Datenstrom eines Audiokanals übertragen werden (PAD, Programm Associated Data) oder als eigenständiger reiner Datendienst in einem Paketdatenkanal, manchmal N-PAD (nicht-programmbegleitende Daten) genannt. In beiden Fällen ist es Teil des Multiplex-Signals eines DAB-Ensembles

    DLS

    (Dynamic Label Segment): Übertragung von Radiotext-ähnlichen Informationen (Interpret etc.) in einem Audioprogramm als Programm begleitende Daten (PAD). Maximal können 128 Zeichen pro Nachricht übertragen werden.

    IP over DAB

    (ETSI-Standard EN 101 735): Übertragung von IP-Paketen über DAB; damit können IP-basierte Dienste (zum Beispiel Videostreams) auf den Empfänger übertragen werden. Ohne Rückkanal sind allerdings nur Broadcast/Multicast-Daten sinnvoll.

    TMC

    (Traffic Message Channel): aus RDS übernommene Übertragung kodierter und stark komprimierter Verkehrsinformationen, die über ein Codebuch wieder in lesbaren Text bzw. Hilfestellungen für Navigationssysteme umgewandelt werden können.

    TPEG

    (Transport Protocol Experts Group): Multimodale Verkehrs- und Reiseinformationen.


    Weitere Dienste sind problemlos in DAB zu übertragen, da sie über spezielle Verwaltungsinformationen im Multiplex signalisiert werden können.


    DAB/DMB eröffnet somit die Möglichkeit eines schnellen Datenkanals, auf dem neben TMC-Daten (Traffic Message Channel) wesentlich größere Datenmengen mit einer um Faktor 100 höheren Geschwindigkeit übertragen werden können. Das ermöglicht nicht nur die Übertragung wesentlich detaillierter Meldungen, sondern zusätzlich auch innerstädtische Meldungen, welche aufgrund des hohen Datenvolumens und einer nach oben begrenzten Location-Liste über TMC nicht mehr übertragen werden können. TPEG befindet sich derzeit in der TISA (Traveller Information Services Association) in Spezifikation. Die TISA ist ein Zusammenschluss des TMC-Forums unter ERTICO in Brüssel und der TPEG-Group bei der EBU in Genf. Darüber hinaus gibt es noch in Deutschland die Arbeitsgruppe »mobile.info« unter Beteiligung von BMW, Daimler, VW-Audi, Bosch-Blaupunkt, FhG, GEWI, Navteq, Tele Atlas, T-Systems und VDO-Siemens.[25] Diese Gruppe spezifiziert in Abstimmung mit der TISA ein besonders schlankes, auf die automobilen Belange zugeschnittenes TPEG Automotive, welches sich durch sehr geringe Verbreitungskosten bei hoher Effizienz auszeichnet.



    Literatur |



    • Hermann-Dieter Schröder: Digital Radio (DAB) – Kurzer Überblick über den Stand des terrestrischen digitalen Hörfunks. In: Arbeitspapiere des Hans-Bredow-Instituts. Nr. 2, Januar 1999 (PDF; 162 kB).


    • Frank Müller-Römer: Drahtlose terrestrische Datenübertragung an mobile Empfänger. VISTAS-Verlag, Berlin, 1998, ISBN 3-89158-212-9.

    • Ulrich Freyer: DAB Digitaler Hörfunk. Verlag Technik, Berlin 1997, ISBN 3-341-01181-1.

    • Thomas Lauterbach: Digital audio Broadcasting. Franzis-Verlag, Feldkirchen 1996, ISBN 3-7723-4842-4.



    Weblinks |



     Wikinews: Kategorie:Digitalradio – in den Nachrichten



    • worlddab.org – WorldDMB-Internetpräsenz


    • wohnort.org – DAB Ensembles Worldwide


    • ukwtv.de – DAB-Sendertabellen für Mitteleuropa


    • Vergleichende Bewertung der verfügbaren Übertragungssysteme für den digitalen terrestrischen Hörfunk. (PDF; 81 kB) (Nicht mehr online verfügbar.) In: alm.de. Technische Kommission der Landesmedienanstalten, archiviert vom Original am 6. Oktober 2007; abgerufen am 13. Dezember 2018. 


    • ADAC-Berichte zu DAB. Autoradio. (Nicht mehr online verfügbar.) In: adac.de. Archiviert vom Original am 12. August 2014; abgerufen am 13. Dezember 2018. 


    • ETSI TS 102 818 V1.4.1 (2008-06) – Digital Audio Broadcasting (DAB); Digital Radio Mondial (DRM); XML Specification for Electronic Programme Guide (EPG) (PDF; 229 KB)



    Einzelnachweise |




    1. ETSI EN 300 401 V1.4.1 (2006-06) – Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers (PDF; 1,76 MB).


    2. WorldDAB: DAB Global Status. (PDF; 439 kB) In: worlddab.org. 21. Oktober 2016, abgerufen am 18. November 2016 (englisch). 


    3. APA: Digitalradio-Pilotbetrieb in Wien gestartet. In: derStandard.at. 28. Mai 2015, abgerufen am 14. Juni 2015. 


    4. DAB Ensembles Worldwide. Canada. Abgerufen am 7. Februar 2013 (kanadisches Englisch). 


    5. Siehe Literatur, Lauterbach, S. 17 ff.


    6. Siehe Literatur, Lauterbach, S. 23 ff.


    7. Siehe Literatur, Müller-Römer, S. 29 ff.


    8. Siehe Literatur, Lauterbach, S. 26 ff.


    9. Mobiles Breitband-Projekt 2016. Bundesnetzagentur – Frequenzauktion. In: bundesnetzagentur.de, 1. September 2015, abgerufen am 13. Dezember 2018.


    10. Michael Fuhr: Studie: Mehr Interesse an DAB/Digital Radio als angenommen. Uni Bonn geht von 546.000 Geräten in deutschen Haushalten aus. In: teltarif.de, 8. April 2007, abgerufen am 13. Dezember 2018.


    11. Webseite digitalradio.ch: Häufig gestellte Fragen


    12. WorldDMB bietet Übersicht des länderspezifischen Ausbaus von DAB-Netzen. In: worlddab.org, abgerufen am 8. April 2019.


    13. Infosat-Meldungen (57688). (Nicht mehr online verfügbar.) In: infosat.de. Archiviert vom Original am 22. März 2016; abgerufen am 13. Dezember 2018 (Mementos leer). 


    14. LMS-Direktor Bauer zur Vergabe der nationalen Digitalradio-Frequenzen: „Wollen zügig entscheiden“. Digitalmagazin im Gespräch mit Gerd Bauer, Direktor der Landesmedienanstalt Saarland (LMS). (Nicht mehr online verfügbar.) In: infosat.de. Infosat Verlag & Werbe GmbH, Daun, 23. März 2010, archiviert vom Original am 28. März 2010; abgerufen am 13. Dezember 2018. 


    15. TNS Infratest: Digitalisierungsbericht 2013. (PDF; 833 kB) (Nicht mehr online verfügbar.) In: die-medienanstalten.de. September 2013, S. 65, archiviert vom Original am 23. September 2015; abgerufen am 13. Dezember 2018. 


    16. TNS Infratest: Digitalisierungsbericht 2014. (PDF; 2,4 MB) Daten und Fakten. (Nicht mehr online verfügbar.) In: die-medienanstalten.de. Juli 2014, S. 98, archiviert vom Original am 23. September 2015; abgerufen am 13. Dezember 2018. 


    17. TNS Infratest: Digitalisierungsbericht 2014. (PDF; 2,4 MB) Daten und Fakten. (Nicht mehr online verfügbar.) In: die-medienanstalten.de. Juli 2014, S. 100, archiviert vom Original am 23. September 2015; abgerufen am 13. Dezember 2018. 


    18. TNS Infratest: Digitalisierungsbericht 2014. (PDF; 2,4 MB) Daten und Fakten. (Nicht mehr online verfügbar.) In: die-medienanstalten.de. Juli 2014, S. 93, archiviert vom Original am 23. September 2015; abgerufen am 13. Dezember 2018. 


    19. Oliver Ecke, TNS Infratest: Digitalisierungsbericht 2015. (PDF; 980 kB) Digitalradio 2015. (Nicht mehr online verfügbar.) In: die-medienanstalten.de. 31. August 2015, S. 4 ff., archiviert vom Original am 22. September 2015; abgerufen am 13. Dezember 2018. 


    20. Reichweite für Digitalradio DAB+ steigt weiter. In: heise online. 4. September 2017, abgerufen am 2. Februar 2018. 


    21. Digitalisierungsbericht 2017. Abgerufen am 2. Februar 2018. 


    22. Alle Angaben sind dem DAB-Standard ETSI EN 300 401 V1.4.1 (2006-06) entnommen


    23. Zum zusätzlichen Kodierungsverfahren HE AAC+. (PDF; 949 kB) (Nicht mehr online verfügbar.) WorldDAB, 2007, archiviert vom Original; abgerufen am 13. Dezember 2018 (englisch, Update: März 2008). 


    24. Über DAB Surround. (PDF) (Nicht mehr online verfügbar.) In: iis.fraunhofer.de. Fraunhofer IIS, ehemals im Original; abgerufen am 13. Dezember 2018 (keine Mementos).@1@2Vorlage:Toter Link/www.iis.fraunhofer.de (Seite nicht mehr abrufbar, Suche in Webarchiven) 


    25. Mobile Platform for Efficient Traffic Information Services. (Nicht mehr online verfügbar.) In: mobile-info.org. Archiviert vom Original am 3. April 2010; abgerufen am 13. Dezember 2018 (englisch). 







    Popular posts from this blog

    Liste der Baudenkmale in Friedland (Mecklenburg)

    Single-Malt-Whisky

    Czorneboh