Determine whether or not $sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$ converges.
$begingroup$
$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
3 hours ago
add a comment |
$begingroup$
$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
$endgroup$
$$sum_{k=1}^inftyleft(frac k{k+1}right)^{k^2}$$
Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.
sequences-and-series convergence
sequences-and-series convergence
edited 6 mins ago
user21820
40.2k544163
40.2k544163
asked 3 hours ago
MD3MD3
462
462
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
3 hours ago
add a comment |
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
3 hours ago
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
1
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
1
$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
3 hours ago
$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
3 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$
$$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
$$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-sum-k-1-infty-left-frac-kk1-rightk2-conv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$
So your series converges!
$endgroup$
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$
So your series converges!
$endgroup$
By Root test, $$limsup_{n to infty} sqrt[n]{left(frac{n}{n+1}right)^{n^2}}=limsup_{n to infty} {left(frac{n}{n+1}right)^{n}}=limsup_{n to infty} {left({1+frac{1}{n}}right)^{-n}}=frac{1}{e}<1$$
So your series converges!
edited 3 hours ago
answered 3 hours ago
Chinnapparaj RChinnapparaj R
6,54021029
6,54021029
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
$begingroup$
How did you know to take the supremum
$endgroup$
– MD3
3 hours ago
1
1
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
$begingroup$
See the wiki link!
$endgroup$
– Chinnapparaj R
3 hours ago
add a comment |
$begingroup$
Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$
$endgroup$
add a comment |
$begingroup$
Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$
$endgroup$
add a comment |
$begingroup$
Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$
$endgroup$
Hint: $$left( frac{k}{k+1} right)^k sim e^{-1} $$
answered 3 hours ago
Robert IsraelRobert Israel
331k23221478
331k23221478
add a comment |
add a comment |
$begingroup$
$$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$
$$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
$$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$
$$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
$$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$
$endgroup$
add a comment |
$begingroup$
$$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$
$$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
$$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$
$endgroup$
$$a_k=left(frac k{k+1}right)^{k^2}implies log(a_k)=k^2 logleft(frac k{k+1}right)$$
$$log(a_{k+1})-log(a_k)=(k+1)^2 log left(frac{k+1}{k+2}right)-k^2 log left(frac{k}{k+1}right)$$ Using Taylor expansions for large $k$
$$log(a_{k+1})-log(a_k)=-1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)$$
$$frac {a_{k+1}}{a_k}=e^{log(a_{k+1})-log(a_k)}=frac 1 e left(1+frac{1}{3 k^2}+Oleft(frac{1}{k^3}right)right)to frac 1 e $$
answered 1 hour ago
Claude LeiboviciClaude Leibovici
126k1158135
126k1158135
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-sum-k-1-infty-left-frac-kk1-rightk2-conv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
3 hours ago
$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
3 hours ago
1
$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
3 hours ago
1
$begingroup$
For $kge 1$, we have$$left(frac{k}{k+1}right)^{k^2}le e^{-k/2}$$
$endgroup$
– Mark Viola
3 hours ago